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Abstract

One of the issues of risk management is the choice of the distribution of asset returns. Aca-

demics and practitioners have assumed for a long time (for more than three decades) that the

distribution of asset returns is a Gaussian distribution. Such an assumption has been used in

many fields of finance: building optimal portfolio, pricing and hedging derivatives and man-

aging risks. However, real financial data tend to exhibit extreme price changes such as stock

market crashes that seem incompatible with the assumption of normality. This article shows

how extreme value theory can be useful to know more precisely the characteristics of the dis-

tribution of asset returns and finally help to chose a better model by focusing on the tails of the

distribution. An empirical analysis using equity data of the US market is provided to illustrate

this point.
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0. Introduction

The statistical distribution of asset returns plays a central role in financial mode-

ling. Assumptions on the behavior of market prices are necessary to test asset pricing
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theories, to build optimal portfolios by computing risk/return efficient frontiers, to

value derivatives and define the hedging strategy over time, and to measure and man-

age financial risks. However, neither economic theory nor statistical theory exist to

assess the exact distribution of returns. Distributions used in empirical and theoret-

ical research are always the result of an assumption or estimation using data. The
paradigm adopted in finance is the Gaussian distribution. In the 1950s and 1960s,

Markowitz (1952) and Sharpe (1964) assume normality for asset returns when stud-

ying portfolio selection and deriving the capital asset pricing model. In the beginning

of the 1970s, Black and Scholes (1973) and Merton (1973) derived the price and the

hedging strategy of an option by assuming a Brownian motion for the price of the

underlying asset implying a Gaussian distribution for returns. More recently, with

the changes in the banking and financial regulation on risks and capital, value-at-risk

models developed and implemented by financial institutions also rely intensively on
the Gaussian distribution.

Although normality is the paradigm in financial modeling, several alternatives

have been considered. The main reason for looking at other models is that there

is a growing evidence that the Gaussian distribution tends to underestimate the

weight of the extreme returns contained in the distribution tails. For example,

the stock market crashes of 1929 and 1987, corresponding to daily market drops

of more than 10% and 20% respectively, are very unlikely in a world governed

by normality. Several other candidates have been proposed in the academic litera-
ture and used with more or less success by practitioners: a mixture of Gaussian dis-

tributions, stable Paretian distributions, Student-t distributions and the class of

ARCH processes. One problem with these alternatives is that they are not nested

and then not directly comparable (by carrying out a likelihood ratio test for

example).

In this paper I propose a method which allows one to discriminate among these

different models. I look at the two extreme parts of the distribution: the left tail

and the right tail. The form of the tails is different for the models cited above as
the weight of extremes varies. I use extreme value theory, which provides a measure

of the importance of extremes in the distribution of returns. 1 This measure called

the tail index is used to build a formal test to discriminate among the models com-

monly used.

The remainder of the paper is organized as follows: Section 1 presents extreme

value theory while Section 2 gives the different methods of estimation of the statis-

tical distribution of the extremes. Section 3 describes the application of extreme

value theory for discriminating among distributions of returns. The empirical ana-
lysis is then presented in Section 4. The last section concludes.
1 Earlier work applying extreme value theory in finance can be found in Jansen and De Vries (1991),

Longin (1993) and Loretan and Phillips (1994). These studies focus on the distribution tails of the US

stock market returns.
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1. Extreme value theory

This section presents the main results for extreme value theory. Two approaches

are usually considered to define extremes: the minimum/maximum approach and the

negative/positive exceedance approach.

1.1. The distribution of returns

Starting with the notations, R will stand for the (logarithmic) return of the asset

or portfolio computed over a given time-interval, fR and FR, respectively the density

probability and cumulative distribution functions of the random variable R. The

support of the density function is noted as [l,u], the lower and upper bounds, l

and u, being possibly equal to infinity (it is the case for the Gaussian distribution).
Let R1,R2, . . . ,Rn be n returns observed on n time-intervals of frequency f.

1.2. Extremes defined as minimal and maximal returns

Extremes can be defined as the minimum and the maximum of the n random var-

iables R1,R2, . . . ,Rn. I note Yn the highest return (the maximum) and Zn the lowest

return (the minimum) observed over n trading time-intervals. 2

The extreme value theorem (EVT) is interested in the statistical behavior of the
minimum and maximum of random variables. It is analogous to the central limit the-

orem (CLT), which is interested in the statistical behavior of the sum of random var-

iables. Both theorems consider the asymptotic behavior of the variables in order to

get results that are independent of the initial distribution. In the EVT framework

extremes will have to be selected from very long time interval such as the sum is

computed over very long time-interval in the CLT framework. In order to get

non-degenerated limiting distributions, the variables of interest have first to be

standardized. This is illustrated below in the EVT case.
If the variables R1,R2, . . . ,Rn are statistically independent and drawn from the

same distribution (hypothesis of the random walk for stock market prices), then

the exact distribution of the maximum Yn is simply given by

F Y nðrÞ ¼ ðF RðrÞÞn: ð1Þ
The distribution of extremes depends mainly on the properties of FR for large

values of r. Indeed, for small values of r, the influence of FR(r) decreases rapidly with

n. Hence, the most important information about the extremes is contained in the tails

of the distribution of R. From formula (1), it can be concluded that the limiting dis-

tribution of Yn is null for r less than the upper bound u and equal to one for r greater
than u. It is a degenerate distribution.
2 In the remainder of the paper, theoretical results are presented for the maximum only, since the results

for the minimum can be directly deduced from those of the maximum of the opposite variable using the

following relation: Zn(R) �Min(R1,R2, . . . ,Rn) = �Max(�R1,�R2, . . . ,�Rn) � �Yn(R).
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As explained in Longin (1996), the exact formula of the extremes and the limiting

distribution are not, however, especially interesting. In practice, the distribution of

the parent variable is not precisely known and, therefore, if this distribution is not

known, neither is the exact distribution of the extremes. For this reason, the asymp-

totic behavior of the maximum Yn is studied. Tiago de Oliveira (1973) argues, ‘‘As, in
general, we deal with sufficiently large samples, it is natural and in general sufficient

for practical uses to find limiting distributions for the maximum or the minimum

conveniently reduced and use them’’. To find a limiting distribution of interest,

the random variable Yn is transformed such that the limiting distribution of the

new variable is a non-degenerate one. The simplest transformation is the standard-

ization operation. The variate Yn is adjusted with a scaling parameter an (assumed to

be positive) and a location one bn. In the remainder of the paper, the existence of a

sequence of such coefficients (an > 0, bn) is assumed. Extreme value theory specifies
the possible non-degenerate limit distributions of extreme returns as the variable

n tends to infinity. 3 In statistical terms, a limit cumulative distribution function

denoted by GYn satisfies the following condition:

lim
n!þ1

sup
l<y<u

jF Y nðyÞ � GYnðyÞj ¼ 0:

Gnedenko (1943) shows that the extreme value distribution (EVD) is the only non-
degenerate distribution which approximates the distribution of extreme returns F Y n .

The limit distribution function GYn is given by

GYnðyÞ ¼ exp � 1þ s � y � bn

an

� �� �� ��ð1=sÞ

: ð2Þ

The parameter s, called the tail index, gives a precise characterization of the tail of

the distribution of returns. Distributions with a power-declining tail (fat-tailed distri-
butions) correspond to the case s > 0, distributions with an exponentially-declining

tail (thin-tailed distributions) to the case s = 0, and distributions with no tail (finite

distributions) to the case s < 0. 4 The extreme value distribution is called a Fréchet

distribution, a Gumbel distribution and a Weibul distribution. The Gumbel distribu-

tion can be regarded as a transitional limiting form between the Fréchet and the

Weibull distributions.

The extreme value theorem gives an interesting result: whatever the distribution of

the parent variable R, the limiting distribution of the extremes always has the same
form. The distribution of the extremes for two different parent processes is differen-

tiated by the values of the standardizing coefficients an and bn and the tail index s.
More interestingly, the same limiting distribution is obtained if the i.i.d. hypoth-

esis is relaxed. Berman (1963) shows the same result stands if the variables are cor-

related and if the series of the squared correlation coefficients is finite. A common
3 Proofs of the extreme values theorem and other claims can be found Gnedenko (1943) and in Gumbel

(1958, Chapters 5 and 7) and Galambos�s (1978) text books. See also Embrechts et al. (1997) and Reiss and

Thomas (1997).
4 Note that a different convention is sometimes used for the sign of the tail index.
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model is a discrete mixture of Gaussian distributions. In this particular case, the

Gumbel distribution is still the limiting distribution of the extremes (see Leadbetter

et al., 1983). De Haan et al. (1989) show that if the returns followed an ARCH(1)

process, the variable Yn would have a limiting Fréchet distribution. Following their

research I detail below the relationship between the parameters of the ARCH proc-
ess and those of the distribution of the extremes. Recall that an ARCH(1) process is

given by two equations:

Rt ¼ Et�1ðRtÞ þ et; ð3aÞ

ht ¼ Et�1ðRt � Et�1ðRtÞÞ2 ¼ a0 þ a1 � e2t�1: ð3bÞ
The realized return Rt observed at time t is decomposed into an expected part

noted as Et�1(Rt) computed one period before at time t�1 and an unexpected part

noted as et known at time t only. The expected variance ht varies over time and is

conditioned upon the past value of the innovation et�1. ARCH models reflect quite

well the time-varying behavior of volatility and especially the clustering of extremes.
After a big shock (i.e. a large value for et�1) one expects a high level of variance and

then more big shocks in the future. The coefficient a1 reflects the persistence of vol-

atility (or the correlation of absolute returns). A high value of a1 implies a high level

of persistence, a lot of clusters of extremes and finally a fat-tailed unconditional

distribution of returns. The tail index s is related to the degree of persistence a1 by

the following formula:

Eðða1 � e2Þ1=sÞ ¼ 1: ð4Þ
Assuming a conditional Gaussian distribution for the innovation e, Eq. (4) becomes

C
1

s
þ 0:5

� �
¼

ffiffiffi
p

p
� ð2a1Þ�

1
s; ð5Þ

where C is the gamma function and p the constant Pi. For a given value of the

parameter a1, a unique value of s is obtained by solving Eq. (5). For example, for
a1 equal to 0.5, the tail index s is equal to 0.42.

These results show that the assumption of independence is less important for

extreme values than it would seem at first sight. Let us note that the extremes are

(asymptotically) drawn from an unconditional distribution, even if the parent

variable is drawn from a conditional distribution.

1.3. Extremes defined as return exceedances

Extremes can also be defined in terms of exceedances with reference to a threshold

denoted by h. For example, positive h-exceedances correspond to all observations of

R greater than the threshold h. As results for negative exceedances can be deduced

from those for positive exceedances by consideration of symmetry, I focus on the

case (R > h) which defines the right tail of the distribution of returns. The probability

that a return R is higher than h, denoted by probability ph, is linked to the threshold

h and the distribution of returns FR by the relation ph = 1 � FR(h).
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As explained in Longin and Solnik (2001), the cumulative distribution of h-excee-
dances, denoted by F h

R and equal to (FR (x) � FR(h))/(1 � FR(h)) for x > h, is exactly
known if the distribution of returns FR is known. However, in most financial appli-

cations, the distribution of returns is not precisely known and, therefore, neither is

the exact distribution of return exceedances. For empirical purposes, the asymptotic

behavior of return exceedances needs to be studied. Extreme value theory addresses

this issue by determining the possible non-degenerate limit distributions of excee-

dances as the threshold h tends to the upper point u of the distribution. In statistical

terms, a limit cumulative distribution function denoted by Gh
R satisfies the following

condition:

lim
h!u

sup
h<x<u

jF h
RðxÞ � Gh

RðxÞj ¼ 0:

Balkema and De Haan (1974) and Pickands (1975) show that the generalized Pareto

distribution (GPD) is the only non-degenerate distribution which approximates the

distribution of return exceedances F h
R. The limit distribution function Gh

R is given for

x > h by

Gh
RðxÞ ¼ 1� 1þ s � x� h

r

� �� �1=s

; ð6Þ

where r, the dispersion parameter, depends on the threshold h and the distribution

of returns FR, and s, the tail index, is intrinsic to the distribution of returns FR.
2. Estimation of the tail index

This section deals with the statistical estimation of the tail index. Two approaches

are considered. First, in the so-called parametric approach, the parametric form of
the asymptotic distribution of extremes is assumed to hold even though the database

contains a finite number of observations. The parameter of the distribution of ex-

tremes, including the tail index, are directly estimated by classical methods such as

the maximum likelihood method. Second, in the so-called non-parametric approach,

no parametric distribution is assumed for the extremes.

2.1. The parametric approach

The parametric approach assumes that minimal returns and maximal returns

selected over a given period are exactly drawn from the extreme value distribution

given by Formula (2) or alternatively that negative and positive return exceedances

under or above a given threshold are exactly drawn from the distribution given by

formula (6). With either definition of extremes, the asymptotic distribution contains

three parameters: s, an and bn. for extremes defined as minimal or maximal returns

selected from a period containing n returns, or alternatively, s, rh and ph for extremes

defined as negative or positive return exceedances under or above a given threshold
h. Under the assumption that the limit distribution holds, the maximum likelihood
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method gives unbiased and asymptotically normal estimators (see Tiago de Oliveira

(1973) for the system of equations). The system of non-linear equations can be solved

numerically using the Newton–Raphson iterative method. Note that the regression

method (see Gumbel, 1958) gives biased estimates of the parameters but may be used

to get initial values for the maximum likelihood algorithm.
In practice, the extreme value distributions can be estimated with different values

of the number of returns contained in the selection period n (for minimal and max-

imal returns) and alternatively, with different values of the threshold h (for negative

and positive return exceedances). A goodness-of-fit test such as a Sherman test can

then be carried out in order to choose the most relevant values from a statistical

point of view.

2.2. The non-parametric approach

The previous methods assume that the extremes are drawn exactly from the ex-

treme value distribution. Estimators for the tail index s, which do not assume that

the observations of extremes follow exactly the extreme value distribution, have been

developed by Pickands (1975) and Hill (1975). These estimators are based on order

statistics of the parent variable R.

Pickands�s estimator for the right tail is given by

sPickands ¼ � 1

ln 2
� ln

R0
N�qþ1 � R0

N�2qþ1

R0
N�2qþ1 � R0

N�4qþ1

ð7Þ

where ðR0
tÞt¼1;N is the series of returns ranked in an increasing order and q is an inte-

ger depending on the total number of returns contained in the database N. Pick-

ands�s estimator is consistent if q increases at a suitably rapid pace with N (see

Dekkers and De Haan, 1989). Pickands�s statistic is asymptotically normally distrib-

uted with mean s and variance s2 Æ (2�2s+1 + 1)/[2(2�s � 1) Æ Log2]2. Pickands�s esti-
mator is the most general estimator since it can be used for all types of distributions.

Hill�s estimator for the right tail is given by

sHill ¼
1

q� 1

Xq�1

i¼1

lnR0
N�i � lnR0

N�q: ð8Þ

Hill�s estimator can be used in the case of the Fréchet distribution only (s > 0). In

this situation, Hill�s estimator is consistent and the most efficient estimator. Consist-
ency is still obtained under weak dependence in the parent variable R. Hill�s statistic
is asymptotically normally distributed with mean s and variance s2.

In practice, as the database contains a finite number of return observations, the

number of extreme returns, q, used for the estimation of the model is finite. As lar-

gely discussed in the extreme value theory literature, the choice of its value is a crit-

ical issue (see Danielsson et al. (2001) and Huisman et al. (2001) for a discussion). On

the one hand, choosing a high value for q leads to few observations of extreme

returns and implies inefficient parameter estimates with large standard errors. On
the other hand, choosing a low value for q leads to many observations of extreme
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returns but induces biased parameter estimates as observations not belonging to the

tails are included in the estimation process. To optimize this trade-off between bias

and inefficiency, I use a Monte Carlo simulation method inspired by Jansen and

De Vries (1991). Return time-series are simulated from a known distribution for

which the tail index can be computed. For each time-series, the tail index value is
estimated with a different number of extreme returns. The choice of the optimal

value is based on the mean square error (MSE) criterion which allows one to take

into account the trade-off between bias and inefficiency. The procedure is detailed

in Appendix A.
3. Application of extreme value theory to discriminate among the distributions

of returns

This section reviews the different models for the distribution of returns and shows

how extreme value theory can be used to discriminate among these models by focus-

ing on the distribution tails.

3.1. Distributions of returns

Several distributions for stock returns have been proposed in the financial litera-
ture. Most of the empirical works in finance assume that continuously compounded

rates of return on common stock or on a portfolio are normally distributed with a

constant variance. The Gaussian distribution is consistent with the log-normal diffu-

sion model made popular by the Black–Scholes–Merton option pricing formula.

Moreover, most of the statistical tests lie on the hypothesis of normality. Unfortu-

nately, there is now strong evidence that the distribution of the stock returns departs

from normality. High kurtosis usually found in the data implies that the distribution

is leptokurtic. The empirical distribution is fat-tailed; there are more extreme obser-
vations than predicted by the normal model. This is of great importance because the

tails of the density function partly determine the level of the volatility. And volatility

is certainly a most important variable in finance.

I review below the alternative models to the Gaussian distribution, and show how

these models can be discriminated using the tail index.

Mandelbrot (1963) first suggests that the variance of certain speculative price re-

turns could not exist. Studying cotton prices, he concludes that the stable Paretian

distributions fitted the data better than the Gaussian distribution did. Fama
(1965) extend this approach to stock market prices.

If stock returns usually present fat tails, this does not imply that the variance is

infinite. The mixture of Gaussian distributions and the unconditional Student-t dis-

tributions present an excess of kurtosis but still possess finite variance. Such models

are proposed for stock prices by Praetz (1972) and Press (1967). A mixed distribution

models the heterogeneity of the random phenomenon. The returns are drawn from

different Gaussian distributions. Such a model has been used to take into account

extreme price movements such as stock market crashes, which do not fit in model
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with a single distribution. Such events are assumed to be drawn from a distribution

with a negative mean and high variance. Anomalies in the stock market like the ‘‘day

effect’’ can also motivate this model.

The volatility varies in fact much more over time. Mandelbrot (1963) first finds a

‘‘clustering effect’’ in volatility, and he points out that large changes in prices tend to
be followed by large changes of either sign, and similarly that small changes tend to

be followed by small changes of either sign. The ARCH process proposed by Engle

(1982) models this feature and tends to fit quite well the behavior of volatility.

3.2. Test based on extreme value theory

An extreme value investigation allows one to discriminate among these non-nested

models. Although all processes of returns lead to the same form of distribution of ex-
treme returns, the values of the parameters of the distribution of extremes are in gen-

eral different for two different processes. Especially, the value of the tail index s allows
to discriminate these processes. A tail index value equal to 0 implies a Gumbel distri-

bution obtained for thin-tailed distributions of returns. A negative value for the tail

index implies a Weibul distribution obtained for distributions of returns with finite

tails. A positive value for the tail index implies a Fréchet distribution obtained for

fat-tailed distributions of returns. More precisely, a value of s greater than 0.5 is con-

sistent with the stable Paretian distribution. The Cauchy distribution corresponds to
the special case s = 1. A value of s less than 0.5 is consistent with the ARCH process

or Student�s distribution. An interesting feature of the tail index is that it is related to

the highest existing moment of the distribution. The tail index s and the highest exist-

ing moment denoted by k are simply related by: k = 1/s (for s positive). When s is

equal to 0, then all moments are defined (k = +1). This is the case of the Gaussian

distribution and of the mixture of Gaussian distributions. For the stable Paretian dis-

tribution, k is lower than 2 (the variance is not defined) and equal to the characteristic

exponent. For the Student-t distributions, k is greater than 2 and equal to the number
of degree of freedom. Table 1 summarizes these results.

The tail index provides us with a straightforward test. Two particular uncondi-

tional distributions are considered below: the thin-tailed Gaussian distribution and

the fat-tailed stable Paretian distribution.
Table 1

Tail index and highest existing moment for different models for returns

Models of returns Type Tail index s Highest existing moment k

Gaussian distribution Gumbel s = 0 k = +1
Mixture of Gaussian distributions Gumbel s = 0 k = +1
Stable Paretian distributions Fréchet s > 0.5 k < 2

Student-t distributions Fréchet 0 < s < 0.5 k P 2

ARCH processes Fréchet 0 < s < 0.5 k P 2

Note: The type of extreme value distribution, the tail index value and the highest existing moment for

different models of returns commonly used in financial modeling are given. The tail index s and the highest

existing moment k are related by k = 1/s. The last two columns indicate the constraints on the coefficients

s and k imposed by each model.
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3.2.1. The Gaussian distribution

As the Gaussian distribution for returns implies a Gumbel distribution for ex-

treme returns, the tail index can be used for testing normality. The null hypothesis

is stated as

H0 : s ¼ 0:

If the tail index s is significantly different from 0, then the asymptotic distribution

of extreme returns is not a Gumbel distribution. As a consequence, the Gaussian dis-

tribution for returns can be rejected. Alternatively, if the tail index is not different

from 0, then the asymptotic distribution is the Gumbel distribution. Such a result

is not inconsistent with the normal model.

3.2.2. The stable Paretian distribution

As the Paretian distribution for returns implies a Fréchet distribution for extreme

returns (with a constraint on the tail index value greater than 0.5), the tail index can

also be used for testing the Paretian model. The null hypothesis is stated as

H0 : s > 0:5:

If the tail index s is significantly lower than 0.5, then the asymptotic distribution
of extreme returns is not a Fréchet one with high tail index value. As a consequence,

the stable Paretian distribution for returns can be rejected. Alternatively, if the tail

index s is not significantly lower than 0.5, then the asymptotic distribution is the

Fréchet distribution with high tail index value. Such a result is not inconsistent with

the stable Paretian model.
4. Empirical results

4.1. Data

I use logarithmic daily percentage returns of the S&P500 index based on closing

prices. Data are obtained from www.economagic.com. The database covers the per-

iod January 1954–December 2003 and contains 12.587 observations of daily returns.

The daily returns have a slightly positive mean (0.030%) and a high standard devi-

ation (0.853). The values of the skewness (�1.34) and the excess kurtosis (35.20) sug-
gest departure from the Gaussian distribution. The first order auto-correlation

(generally attributed to a non-trading effect) is small (0.078) but significantly posi-

tive. Little serial correlation is found at higher lags. For the second moment, I find

a strong positive serial correlation: 0.123 at lag 1. The correlation decreases slowly

and remains significant even with a lag of 20 days (0.053), which suggests a strong

persistence in volatility.

I now give some statistics about the extremes. Let us first consider the definition of

extremes as minimal and maximal returns selected over a given time-period. Consid-
ering yearly extremes, I get 50 observations for each type of extreme over the period

January 1954–December 2003. The top 10 yearly largest daily market falls and

http://www.economagic.com


Table 2

Top 10 yearly minimal and maximal daily returns in the S&P500 index

Yearly largest daily market falls Yearly largest daily market rises

October 19 1987 �22.90 October 21 1987 8.71

October 27 1997 �7.11 July 24 2002 5.57

August 31 1998 �7.04 October 28 1997 4.99

January 8 1988 �7.01 September 8 1998 4.96

May 28 1962 �6.91 May 27 1970 4.90

September 26 1955 �6.85 January 3 2001 4.89

October 13 1989 �6.31 March 16 2000 4.65

April 14 2000 �6.00 August 17 1982 4.65

September 17 2001 �5.05 May 29 1962 4.54

September 11 1986 �4.93 October 9 1974 4.49

Note: The 10 lowest yearly minimal daily returns and the 10 highest yearly maximal daily returns in the

S&P500 index over the period January 1954–December 2003 are given. Yearly extreme returns are selected

over non-overlapping years (containing 260 trading days on average).
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market rises are reported in Table 2. Both types of extreme are widely spread. For

the largest declines, the minimal value (�22.90%) is obtained in October 1987 and

the second and third minimal values (�7.11% and �7.04%) during the Asian crisis

in 1997 and the Russian crisis in 1998. The lowest yearly minimal daily returns

(�1.33%) is observed in 1972. For the largest rises, the maximal value (+8.71%) is

observed in October 1987 a few days after the market crash. Let us then consider

the definition of extremes as negative and positive return exceedances under or above

a given threshold. The top 10 largest daily market falls and market rises are reported
in Table 3. As expected, the two definitions of extremes lead to similar sets of ex-

treme observations. However, due to some clustering effect, extreme returns tend

to appear around the same time. 5 This effect seems limited to the stock market crash

of October 1987. Among the top 10 largest daily market falls, this event appears

three times: October 16 (�5.30%), October 19 (�22.90%) and October 26

(�8.64%). The same remark applies to top 10 largest daily market rises. The period

of extreme volatility following the crash on October 19 contains three top positive

return exceedances: October 21 (+8.71%), October 20 (+5.20%) and October 29
(+4.81%).

4.2. Tail index estimates

The approaches described in Section 2 are now used to estimate the tail index. The

empirical results are reported in Table 4 for parametric estimates using minimal and

maximal returns, Table 5 for parametric estimates using negative and positive return

exceedances and Table 6 for non-parametric estimates.
Let us begin to analyze the results for each estimation method as the tail index

value tend to vary according to the method used and also to the parameter used
5 Note that this effect can be estimated by incorporating another parameter in the extreme value

distribution called the extremal index (see Longin, 2000).



Table 4

Parametric estimates of the tail index using minimal and maximal returns

Length of the selection period Tail index estimate

Left tail Right tail

One month 0.209 0.205

(600) (0.031) (0.037)

[26.776] {1.000} [26.675] {1.000}

One quarter 0.244 0.145

(200) (0.048) (0.061)

[0.782] {0.783} [1.201] {0.885}

One semester 0.452 0.076

(100) (0.100) (0.078)

[1.221] {0.889} [1.576] {0.942}

One year 0.511 0.164

(50) (0.153) (0.140)

[0.660] {0.745} [1.321] {0.907}

Note: The tail index estimates using minimal and maximal returns observed over a given time-period are

given. Minimal and maximal returns are selected over period of different length: from one month to one

year. The number of minimal or maximal returns used in the estimation process is given below in

parentheses. The parameters of the distributions of minimal and maximal returns are estimated by the

maximum likelihood method (only the tail index estimates are reported). Asymptotic standard errors are

given below in parentheses. The result of Sherman�s goodness-of-fit test is given in brackets with the

p-value (probability of exceeding the test-value) given next in curly brackets. The 5% confidence level

at which the null hypothesis of adequacy (of the estimated asymptotic distribution of extreme returns to

the empirical distribution of observed extreme returns) can be rejected, is equal to 1.645.

Table 3

Top 10 negative and positive return exceedances in the S&P500 index

Largest daily market falls Largest daily market rises

October 19 1987 �22.90 October 21 1987 8.71

October 26 1987 �8.64 July 24 2002 5.57

October 27 1997 �7.11 July 29 2002 5.27

August 31 1998 �7.04 October 20 1987 5.20

January 8 1988 �7.01 October 28 1997 4.99

May 28 1962 �6.91 September 8 1998 4.96

September 26 1955 �6.85 May 27 1970 4.90

October 13 1989 �6.31 January 3 2001 4.89

April 14 2000 �6.00 October 29 1987 4.81

October 16 1987 �5.30 August 17 1982 4.65

Note: The 10 lowest negative daily return exceedances and the 10 highest positive daily return exceedances

observed over the period January 1954–December 2003 are given. The threshold level is low enough to

obtain at least 10 return exceedances (say ±4%).
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to implement a particular method (i.e. the length of the selection period, the thresh-

old value and the number of tail observations). Let us consider the left tail for exam-

ple. For the left tail, the tail index estimate varies between 0.209 and 0.511 for the

parametric method using minimal returns observed a given period, from 0.137 to

0.742 for the parametric method using negative return exceedances under a given



Table 5

Parametric estimates of the tail index using negative and positive return exceedances

Threshold used to select exceedances Tail index estimate

Left tail Right tail

±1% 0.137 0.083

(1.266) (1.178 ) (0.032) (0.026)

[68.329] {1.000} [63.900] {1.000}

± 2% 0.331 0.121

(238) (239) (0.085) (0.065)

[11.671] {1.000} [10.369] {1.000}

± 3% 0.742 �0.007

(55) (64) (0.235) (0.124)

[1.075] {0.859} [1.776] {0.962}

± 4% 0.367 0.051

(19) (19) (0.314) (0.241)

[0.021] {0.508} [0.174] {0.569}

Note: The tail index estimates using negative and positive return exceedances under or above a given

threshold is given. Return exceedances are selected with different threshold values: from ±1% to ±4%. The

number of return exceedances used in the estimation process is given below in parentheses for both

negative and positive return exceedances. The parameters of the distributions of negative and positive

return exceedances are estimated by the maximum likelihood method (only the tail index estimates are

reported). Asymptotic standard errors are given below in parentheses. The result of Sherman�s goodness-
of-fit test is given in brackets with the p-value (probability of exceeding the test-value) given next in curly

brackets. The 5% confidence level at which the null hypothesis of adequacy (of the estimated asymptotic

distribution of extreme returns to the empirical distribution of observed extreme returns) can be rejected, is

equal to 1.645.

Table 6

Non-parametric estimates of the tail index

Estimator Tail index estimate

Left tail Right tail

Pickands 0.178 (0.127)

(203) (203) (0.120) 0.000

Hill 0.294 (0.030)

(75) (75) (0.034) 0.263

Note: The tail index estimates based on non-parametric methods developed by Pickands (1975) and Hill

(1975) are given. For each method the optimal number of tail observations is computed by simulation (see

Appendix A). It is given in parentheses for both the left and right tails below the method name in the first

column. Asymptotic standard errors of the tail index estimates are given below in parentheses.
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threshold, and from 0.178 to 0.294 for the non-parametric methods. As the paramet-

ric approach assumes that the asymptotic distribution holds for finite samples, it is

important to check the goodness-of-fit of the distribution to empirical data. For min-

imal returns, the Sherman test (reported in Table 4) shows that it seems cautious to

select the extremes over a period longer than a semester. Similarly, for negative

return exceedances, the Sherman test (reported in Table 5) shows that it seems cau-

tious to select extremes under a threshold value lower than �3%. Looking at the
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non-paramertic approach, Pickands�s estimate is positive suggesting that Hill�s esti-
mator can be used as it is restrained to the case of a positive tail index. Under this

assumption, Hill�s estimator is more precise than Pickands�s estimator: the standard

error of Hill�s estimate is almost four times lower than the one of Pickands�s estimate

(see Table 6). For the remaining of the study, I will retain the values, which are the
most relevant from a statistical point of view. For the left tail: 0.511 (parametric

method based on minimal returns), 0.367 (parametric method based on negative re-

turn exceedances) and 0.294 (non-parametric Hill method). For the right tail: 0.164

(parametric method based on maximal returns), 0.051 (parametric method based on

positive return exceedances) and 0.263 (non-parametric Hill method).

The first result is about the sign of the tail index, which determines the type of

extreme value distribution. All tail index estimates (except one) are positive implying

that the distribution of extreme returns is a Fréchet distribution consistent with
fat-tailed distribution of returns.

The second result is about the relative asymmetry between the left tail and

the right tail. The tail index estimates for the left tail are systematically higher

than the one for the right tail. This statement can be formalized by testing the null

hypothesis H0: s
max = smin. For usual confidence level (say 5%) this hypothesis is

sometimes rejected by the data indicating that the left tail is heavier than the right

tail.

4.3. Choice of a distribution of stock market returns

Two particular unconditional distributions are considered: the Gaussian distribu-

tion and the stable Paretian distribution by testing respectively the null hypotheses

H0: s = 0 and H0: s > 0.5. Empirical results are reported in Table 7. Three confidence

level are considered: 1%, 5% and 10%. The lowest the confidence level, the hardest to

reject the null hypothesis.

4.3.1. The Gaussian distribution

Although the tail index estimates are always different from zero, they may not be

significantly different from zero. Results reported in Table 7 show that the null

hypothesis is often rejected even at conservative confidence levels such as 1%. The

Gumbel distribution for extreme returns consistent with thin-tailed distributions

for returns is then rejected. As the Gaussian distribution for returns implies a Gum-

bel distribution for extreme returns, this leads to the rejection of the Gaussian

distribution.

4.3.2. The stable Paretian distribution

Although the tail index estimates are always lower than 0.5 (though positive), the

null hypothesis H0: s > 0.5 may not be significantly rejected. Results reported in

Table 7 show that the null hypothesis is often rejected even at conservative confi-

dence level such as 1%. The Fréchet distribution for extreme returns with a tail index

value higher than 0.5 consistent with heavy-tailed distributions for returns is then re-

jected. As the stable Paretian distribution for returns implies a Fréchet distribution



Table 7

Choice of the distribution of returns based on the tail index

Estimator Test of the null hypothesis

Left tail Right tail

Panel A: The Gaussian distribution

Parametric (ML) (minimal and maximal returns) 1%: rejected 1%: not rejected

5%: rejected 5%: not rejected

10%: rejected 10%: not rejected

Parametric (ML) (return exceedances) 1%: not rejected 1%: not rejected

5%: not rejected 5%: not rejected

10%: not rejected 10%: not rejected

Non-parametric Hill 1%: rejected 1%: rejected

5%: rejected 5%: rejected

10%: rejected 10%: rejected

Panel B: The stable Paretian distribution

Parametric (ML) (minimal and maximal returns) 1%: not rejected 1%: not rejected

5%: not rejected 5%: rejected

10%: not rejected 10%: rejected

Parametric (ML) (return exceedances) 1%: not rejected 1%: rejected

5%: not rejected 5%: rejected

10%: not rejected 10%: rejected

Non-parametric Hill 1%: rejected 1%: rejected

5%: rejected 5%: rejected

10%: rejected 10%: rejected

Note: The result of the choice of a particular distribution for returns based on the tail index are given. Two

particular distributions are considered: the Gaussian distribution characterized with a tail index value

equal to 0 (Panel A) and the stable Paretian distribution characterized with a tail index value higher than

0.5 (Panel B). For the Gaussian distribution the null hypothesis is H0: s = 0. For the stable Paretian

distribution the null hypothesis is H0: s > 0.5. Three estimators are used: the parametric maximum like-

lihood (ML) estimator based on minimal and maximal returns and return exceedances and the Hill non-

parametric estimator. Three confidence levels are considered: 1%, 5% and 10%.
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for extreme returns with a tail index value higher than 0.5, this leads to the rejection

of the stable Paretian distribution.

Both the Gaussian distribution and the stable Paretian distribution seem rejected

by the data. In terms of moments, the variance appears to be defined although not

all moment are defined. The highest existing moment is determined next.

4.4. Highest existing moment

The tail index can be used to compute the highest defined moment of the distri-

bution of returns. Technically, it corresponds to the highest integer k such that

E(Rk) is finite. I proceed as follows: I consider a set of null hypotheses H0(k) defined

by: s < 1/k. If the null hypothesis H0(k) is rejected at a given confidence level, then

the moment of order k is not defined at this level. The null hypothesis H0(+1) de-

fined by s 6 0 serves as a limiting case. If the null hypothesis H0(+1) is rejected, then

not all moments are defined.



Table 8

Maximal existing moment of the distribution of the S&P500 index returns

Estimator Maximal existing moment

Left tail Right tail

Parametric (ML) (minimal and maximal returns) 1%: sixth 1%: all

5%: third 5%: all

10%: third 10%: all

Parametric (ML) (return exceedances) 1%: 10th 1%: all

5%: seventh 5%: all

10%: sixth 10%: all

Non-parametric Hill 1%: fourth 1%: fifth

5%: fourth 5%: fourth

10%: third 10%: fourth

Note: The highest existing moment of the distribution of stock market returns by investigating the weight

of extreme price movements. is given. For a given level of confidence, equal to 1%, 5% and 10%, the null

hypotheses H0(k) defined by: s > 1/k where k is equal to 1,2,3, . . . is studied. A t-test and its associated

p-value are computed. The null hypothesis H0(+1): s < 0 serves as the limiting case. The highest integer k

for which H0(k) is not rejected at the given level, is reported. If the null hypothesis H0(+1) is not rejected,

then all the moments are defined. Three estimators are used: the parametric maximum likelihood (ML)

estimator based on minimal and maximal returns and return exceedances and the Hill non-parametric

estimator. Three confidence levels are considered: 1%, 5% and 10%.
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Table 8 gives the empirical results concerning the highest existing moment by

looking at each tail independently. Three confidence levels are considered: 1%, 5%

and 10%. The lowest the confidence level, the easiest to accept the existence of lower

moments. As expected, the conclusion of the test depends on the method used for

estimating the tail index. However, general results emerged. The first result is that

the second moment (the variance) seems to be always defined as the null hypothesis

H0(2) is never rejected. The fourth moment seems however not always defined. The

second result is the relative asymmetry between the left tail and the right tail. The
highest existing moment by considering the left tail is always lower than the highest

existing moment by considering the right tail suggesting that the left tail is heavier

than the right tail. Moreover, by looking at the right tail, all moments seem defined

in most of tests.
5. Conclusion

Extreme value theory gives a simple way to discriminate among the distributions

of returns. The distributions commonly proposed in the literature can be differenti-

ated by the tails or in other words by the frequency of extreme price movements.

Empirical results for the US stock market lead to the rejection of the Gaussian

distribution and the stable Paretian distributions as well. The former contains too

few extremes while the later too many. Although the distribution of stock market re-

turns is fat-tailed, the variance appears to be well-defined. Only the Student-t distri-

bution and the class of ARCH processes are not rejected by the data. This suggests
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that for the US stock market, a Student-t distribution could be used in a uncondi-

tional modeling of returns and that an ARCH process could be used in a conditional

modeling of returns.
Appendix A. Computation of the optimal value q for non-parametric estimators

I compute the optimal value of q by carrying out a Monte Carlo study as done by

Jansen and De Vries (1991). I proceed as follows: I simulate 12.587 return observa-

tions (the total number of daily returns in the database) drawn from different return

distributions: a Cauchy distribution and Student-t distributions with degrees of free-

dom equal to 2, 3 and 4. The fatness of these four distributions is different and cor-

responds to tail indices s equal to 1, 0.5, 0.33 and 0.25. The Cauchy distribution gives
a lot of extreme values while a Student-t distribution with four degrees of freedom

very few. Then I estimate the tail index using Pickands�s or Hill�s formula with dif-

ferent values of q ranging from 1 to 2.500 (about 20% of the observations). I repeat

this simulation 10.000 times. For each distribution i (chacharterized by a tail index

value si) and each value of q, I get a series of 10.000 observations of the tail index

estimates. Then for each distribution i, I compute the mean square error (MSE) of

this series and I choose the value of q, written qopti , which minimizes the MSE. As

explained by Theil (1971, pp. 26–32) the MSE criterion allows one to take explicitly
into account the two effects of bias and inefficiency. The mean square error of S sim-

ulated observations eX s of the estimator of a parameter X can be decomposed as

follows:

MSEððeX sÞs¼1;S0X Þ ¼ ðX � X Þ2 þ 1

S

XS

s¼1

ðeX s � X Þ2;

where X represents the mean of S simulated observations. The first part of the

decomposition measures the bias and the second part the inefficiency.

Table 9 reports the minimizing q-levels and associated MSEs using Hill�s estima-

tor. Along the diagonal are the minimal MSEs; the theoretical MSE value equal to

s2/q is also reported. As noted by Jansen and De Vries (1991), there is a U-shaped
relationship between MSE and q. It reflects the trade-off between inefficiency and

bias: when few observations are used (q low), the bias in the estimation of s is neg-

ligible as most of the observations are extreme but the variance of the estimator is

high; when a lot of observations are used (q high), a bias is introduced in the estima-

tion of s because of the inclusion of more central values but the variance of the esti-

mator is low.

With real data I proceed as follows: I compute tail index estimates with the four

optimal values previously obtained given as ðqopti Þi¼1;4 These values correspond to the
four chosen values of the tail index given as ðsiÞiÞi¼1;4. I retain the estimate that is the

closest to the chosen value si. To do this I compute the statistics ðsHillðqopti Þ � siÞ=ri

where sHillðqopti Þ is the Hill�s estimate computed with qopti extremes and ri is the stand-
ard error of this estimate, and the associated p-value noted pi. I finally retain the



Table 9

Optimal value for Hill�s estimator of the tail index

k = 1 (s = 1.00) k = 2 (s = 0.50) k = 3 (s = 0.33) k = 4

(s = 0.25)

q = 1.084 0.0010 0.0054 0.0142 0.0214

k = 1 (s = 1.00) [0.0009]

q = 329 0.0031 0.0009 0.0019 0.0039

k = 2 (s = 0.50) [0.0008]

q = 153 0.0071 0.0016 0.0010 0.0015

k = 3 (s = 0.33) [0.0007]

q = 77 0.0146 0.0034 0.0014 0.0011

k = 4 (s = 0.25) [0.0007]

Note: The mean squared error (MSE) and the theoretical MSE in brackets obtained from simulations for

different values of q used to compute Hill�s estimate and for different values of the degrees of freedom a (or

the tail index s) are indicated. The case k = 1 corresponds to a Cauchy distribution and k = 2, 3 and 4 to

Student-t distributions. This corresponds to tail index values respectively equal to 1.00, 0.50, 0.33 and 0.25.

The whole period is assumed to contain 12.587 observations. Values of q minimizing the MSE are 1.084

for s = 1.00, 329 for s = 0.50, 153 for s = 0.33 and 77 for s = 0.25. Minimizing MSEs can be found in

diagonal.
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estimate for which the lowest value of pi is obtained. In my study I keep 75 extreme

returns to compute Hill�s estimator (the same number for the left and right tails).

Optimal value for Pickands�s estimator is 203.
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