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Abstract

In this paper I introduce new financial derivatives: boom options and crash options. These options are aimed at protecting investors' portfolios during periods of extreme volatility against a sharp, large rise or decline in the value of a short or long position. Boom and crash options provide an insurance against rare events like stock market booms and crashes.


Hedging strategy and pricing are first derived for a perfect market assuming a geometric Brownian motion for the price of the underlying interest. However, the occurrence of extreme price movements which are central to the pricing of boom and crash options is largely underestimated in a Gaussian market. A more appropriate approach based on extreme value theory is then proposed to take into account rare events.
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1. INTRODUCTION


Risk is one of the most important factors in the management of financial assets. The efficiency of risk management methods such as portfolio insurance is, however, largely undermined during periods of extreme volatility like stock market booms and crashes.
 Moreover, portfolio insurance may be liable to have a destabilizing effect on the market during these periods.
 In any event, such a dynamic hedging technique has been less used by market participants since the last stock market crash of October 1987.


To improve the performance of portfolio insurance techniques, especially during periods of market stress, I propose new financial derivatives called boom options and crash options whose purpose is to protect the value of a short or long position against a sharp, large rise or decline in market prices. Portfolio managers could use boom options to limit their extreme upside risk and crash options to limit their extreme downside risk. Boom and crash options complete the spectrum of existing options as they focus on extreme price changes during a short period. In their conception boom and crash options are relatively close to lookback options
 whose payoff depends on the maximal or minimal price reached by the expiration date. Although lookback options deal with the difference between the price at the expiration date and its maximum or minimum reached during their life-time, boom and crash options deal with the maximal or minimal price changes computed over a short period of time.


The remainder of this paper is organized as follows: a statistical study about extreme returns is first presented in section 2 to motivate the introduction of new financial derivatives: it shows that the market is not a Gaussian market but a Fréchet market as defined in Longin (1995a) characterized by large price movements; section 3 defines boom and crash options; section 4 presents the hedge portfolio and the pricing formula in the case of a perfect, continuous Gaussian market used as a benchmark and in an extreme value framework considering the appropriate weight of extremes. The last section offers preliminary conclusions and discusses related issues. 

2. EXTREME RETURNS ON THE U.S. STOCK MARKET


This section studies the statistical behavior of extreme returns using extreme value theory. Empirical results about their distribution are then exploited to characterize the U.S. stock market.

2.1 Extreme value theory


Assuming that basic return rt(f) observed on the time-interval [t-1, t] of length f, is drawn from any distribution Fr(f), the exact distribution of the maximal return
 denoted by Y1,T(f) observed over n basic time-intervals [0, 1], [1, 2], [2, 3], ..., [T-2, T-1], [T-1, T],
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In practice, the distribution of returns is not precisely known and, therefore, if this distribution is not known, neither is the exact distribution of the extremes. From formula (1), it can also be concluded that the limiting distribution of Y1,T(f) is degenerate. Then, for practical and theoretical purposes, the asymptotic behavior of the extremes is studied. To find a limiting distribution of interest, the maximum variable Y1,T(f) is reduced with a scale parameter αn(f) (assumed to be positive) and a location parameter ßn(f) such that the distribution of standardized extremes (Y1,T(f)-ßn(f))/αn(f) is non-degenerate. Gnedenko (1943) proves the so-called extreme value theorem which specifies the form of the limiting distribution FY as the length of the period over which extremes are selected (the variables n or T for a given frequency f) tends to infinity. Three possible types of limiting extreme value distributions can be reached:


The Gumbel distribution (type I):
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The Fréchet distribution (type II):


[image: image4.wmf](

)

      

0).

>

(l

  

0

>

y

 

for

       

y

-

 

 

          

0

y

 

for

  

          

0

 

<

 

=

 

(y)

F

l

-

Y

exp

£



SEQ Equation  \* ARABIC  \h4
(3)


The Weibull distribution (type III):
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The tail of the distribution Fr(f) is either declining exponentially (type I), or by a power (type II) or remains finite (type III). For the first and third cases all moments of the distribution of r(f) are well-defined. For the second case the shape parameter l reflects the weight of the tail of the distribution of the basic variable r(f): the lower l, the fatter the distribution of r(f). The shape parameter corresponds to the maximal order moment: the moments of order greater than l are infinite and the moments of order less than l are finite: the distribution of r(f) is fat-tailed (Gumbel 1958, p. 266). For example, if l is greater than unity, then the mean of the distribution exists; if l is greater than two, then the variance is finite; if l is greater than three, then the skewness is well-defined, and so forth. The shape parameter is an intrinsic parameter of the process of returns and does not depend on the number of returns n from which the maximal return is selected.


Jenkinson (1955) proposes a generalized formula (5) which groups the three types distinguished by Gnedenko (1943):
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The parameter τ, called the tail index, is related to the shape parameter l by τ=-1/l. The tail index determines the type of distribution: τ<0 corresponds to a Fréchet distribution (type II), τ>0 to a Weibull distribution (type III), and the intermediate case (τ=0) corresponds to a Gumbel distribution (type I). The Gumbel distribution can be regarded as a transitional limiting form between the Fréchet and the Weibull distributions as (1-τ(y)1/τ is interpreted as e-y. For small values of τ (or large values of l) the type II and type III distributions are very close to the type I distribution.


Gnedenko (1943) gives necessary and sufficient conditions for a particular distribution to belong to one of the three types. For example, the normal and log-normal distributions commonly used in finance lead to the Gumbel distribution for the extremes. The Student-t distribution considered by Praetz (1972) obeys the Fréchet distribution with a shape parameter l equal to its degree of freedom (l(2). Stable Paretian laws introduced by Mandelbrot (1963) also lead to a Fréchet distribution with a shape parameter l equal to their characteristic exponent (0<l<2). 


The extreme value theorem has been extended to time-series: Berman (1964) shows that the same result stands if the variables are correlated (the sum of squared correlation coefficients remaining finite); Leadbetter et al. (1983) consider various processes based on the normal distribution: auto-regressive processes with normal disturbances, discrete mixtures of normal distributions as studied in Kon (1984) and mixed diffusion jump processes as advanced by Press (1967) all have thin tails so that they lead to a Gumbel distribution for the extremes; and De Haan et al. (1989) show that if r(f) follows the ARCH process introduced by Engle (1982), then the maximum has a Fréchet distribution.

2.2 Empirical results about the U.S. stock market


An extended version of Schwert's database of returns from 1885 to 1993 is used here.
 Returns reflect the daily change in the value of an index composed of the most traded stocks on the New York Stock Exchange. Basic returns r(f) are computed on a daily basis as percentage price change (adjusted for dividends and any change in the capital structure of the firms). Maxima Y1,T(f) and minima Z1,T(f) are then defined as the largest daily rise in the stock market and the largest daily fall over a year (containing on average 278 trading days). Maximum-likelihood estimates of the scale parameter αn(f), the location parameter ßn(f), and the tail index τ, for the distributions of extreme daily returns observed over a year, are given in Table 1A for maxima and in Table 1B for minima. The results differ slightly from Longin (1995a) as percentage returns are used instead of logarithmic returns and as the period is extended to December 1993. Both maximal and minimal returns belong to the domain of attraction of the Fréchet distribution as the tail index is significantly negative: -0.369 for maxima and -0.338 for minima with associated t-tests equal to -5.12 and -4.60. A likelihood ratio test between the Fréchet case and the Gumbel case leads to a firm rejection of the Gumbel distribution (and, a fortiori, a rejection of the Weibull distribution). The test value is equal to 81.01 for the maxima and 67.43 for the minima, with p-values less than 10-5.


The goodness-of-fit of the extreme value distribution can be studied by comparing the empirical frequency of extreme returns with the estimated Fréchet frequency. The empirical frequency is given in column (1) of Table 2A for maxima and Table 2B for minima. For example, 40.37% of maximal daily returns observed over a year are above the 3% level and 15.60% above 5%. Such results are close to the one given by the Fréchet distribution in column (2) which predicts 42.90% of maximal returns above the 3% level and 12.17% above 5%. Such figures differ dramatically from the one predicted by the distribution of extreme returns obtained from a log-normal distribution for daily returns as given in column (3). The results show that the distribution of extremes based on log-normality fits badly reality; it leads especially to underestimates of the weight of large extreme returns. For example, the probability of a maximal return greater than 5% is 0.03 compared with an empirical frequency of 15.60. A similar conclusion applies to minimal returns.

2.3 Characteristics of extreme returns on the U.S. stock market


An economic implication of these results concerns the type of market in which assets are traded by investors. Fama (1963) and McCulloch (1978) discuss two extreme cases: the discontinuous stable Paretian hypothesis and the continuous Gaussian hypothesis. In a stable Paretian market, a large price change over a long time-interval is, most of the time, the result of one or a few very large price changes that took place during smaller subintervals and the price path contains discontinuities. In a Gaussian market, a large price change is more likely the result of many very small price changes and the price path is continuous. This study of the U.S. market over a long period rejects both hypotheses (the tail index is significantly higher than -0.5 and different from 0) and suggests an intermediate situation (the tail index is between -0.5 and 0). The market under study - a Fréchet market - presents more extremes and so more risk for investors than a Gaussian market, but fewer extremes and so less risk than a stable Paretian market. The market price may or may not exhibit discontinuities according to the process governing returns. Such a market characteristic has a direct economic implication for investors following stop-loss, arbitrage or portfolio insurance strategies: in the case of continuity, these strategies may be as reliable as in a Gaussian market although in practice larger price movements may occur on a short time-interval, and in the case of discontinuity, these strategies may be more efficient than in a stable Paretian market as large price movements occur less often. In a Fréchet market investors may have to use specific instruments, such as boom options and crash options proposed in this paper, to protect their positions during periods of high volatility. The type of market identified by Longin (1995a) is indeed a strong motivation for the introduction of these new financial instruments.

3. DEFINITION OF BOOM AND CRASH OPTIONS


Options are completely defined when the underlying interest, the payoff function depending on the strike and the expiration date, the type of exercise, and the settlement procedure are specified. These attributes are defined below for boom and crash options. The use of such instruments during the crash of October 1987 is studied as an example.

3.1 Underlying interest


There are, a priori, no conditions to impose on the choice of the underlying interest. While this paper focuses on the equity market, commodities, foreign exchange and bond markets may be considered as well. Boom and crash options could be indifferently associated with individual stocks or any portfolios of these assets combined together. However, as already noted by Cox and Rubinstein (1985, pp. 446-458), financial theory suggests that options written on asset portfolios are potentially of greater social usefulness than conventional options written on single equity securities. Stock and futures indexes
 such as the S&P 100, S&P 500, S&P Midcap indexes, the NASDAQ 100 index, the Major Market index, the NYSE index, and the Value Line index in the United States are potential good candidates. As an example used throughout the paper a portfolio composed of the stocks of the Standard and Poor's 500 index is considered. An investor with a long position will be sensitive to a large decline in the S&P 500 index price and will protect his position with a crash option to limit his extreme downside risk while an investor with a short position will be sensitive to a large rise in the index price and will protect her position with a boom option to limit her extreme upside risk.

3.2 Payoff function


The aim of boom and crash options is to protect a position against a sharp variation of market prices over a short period of time. As noted by Kindleberger (1978) stock market crashes generally occur during a few days. The period of reference could then range from a day to a few weeks. As it is the change in the value of the underlying interest which matters, I thus consider percentage price changes or returns. The frequency used to compute these variables is denoted by f.


As a consequence, the strike is also defined as a return. The striking return should be computed in relation to the volatility of the price of the underlying interest. For example, S&P 500 index returns present a standard deviation around 1% in daily units. Considering a crash option with a daily frequency to protect a long position in the S&P 500 portfolio, striking returns of 0%, -1%, -2%, -3%, -4% and -5% are potential good candidates. A crash option with a 0% striking return annihilates the impact of the largest daily drop on the portfolio value, while a crash option with a -3% striking return limits the impact of the largest daily drop to -3% (if the S&P 500 index dropped by more than 3% on a single day by the expiration date). The striking return is denoted by k.


As the strike is expressed as a rate of return, it is necessary to define the notional value associated with boom and crash options contracts. This represents the amount of money initially protected by boom and crash options. The notional value of a standard contract is denoted by NV.


As the type of event related to boom and crash options is essentially rare, the time to expiration of these options should be long enough that the probability of such an event is non-negligible. The time to expiration could range from a few months to a few years. The time to expiration is denoted by T and expressed in the unit of the chosen frequency f. The variables T and f are related by the formula T = n(f, where n is the number of basic time-intervals of length f during the period [0, T]. For example, if the time to expiration of a crash option with daily frequency is equal to one year, then the variable n is around 250.


The payoff for a boom option issued at time 0 with striking return k, notional value NV, and frequency f expiring at date T, is defined by
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Loosely speaking, returns r1, r2, r3, ..., rT-1, rT observed over the n basic time-intervals [0, 1], [1, 2], [2, 3], ..., [T-2, T-1], [T-1, T] are compared with the striking return k. If there is a time-interval [t-1, t] when the difference rt-k is positive (that is to say if the price of the underlying interest rose by more than k percent during the time-interval [t-1, t]), then the owner of the boom option will receive for sure at expiration date T a positive amount of money at least equal to NV((rt-k). The exact amount of money received at expiration date T is equal to NV((rt*-k), where rt* is the largest return (assumed to be greater than k) occurring during the basic time-interval [t*-1, t*]. If none of the returns r1, r2, r3, ..., rT-1, rT is higher than the striking return k, then the owner of the boom option receives nothing at the expiration date. 


The payoff of a boom option evolves with time according to the path followed by the price of the underlying interest. This is graphically represented in Figure 1A when the maximal return reached by time t, Y1,t(f), is lower than the striking return k, and in Figure 1B for the opposite case when the maximal return is higher than the initial striking return.


The payoff of a crash option issued at time 0 with striking return k, notional value NV, frequency f, and expiration date T can be defined in a similar way
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The payoff of a crash option is graphically represented in Figure 2A when the minimal return reached by time t, Z1,t(f), is assumed to be higher than the striking return k, and in Figure 2B for the opposite case when the minimal return is lower than the initial striking return.

3.3 Other features


The type of exercise of boom and crash options should be European: the holder of an option receiving the proceeds at expiration date only (although she or he could sell back the option before the expiration date). Note that American-type boom and crash options would be irrelevant as it will be shown later that until the last basic time-interval the time value of these options is always strictly positive.


Purchasers of boom and crash options would simply pay the premium at the beginning of the transaction and writers would have to deposit cash and securities with their broker or the Exchange as collateral for the writer's obligation to buy or sell the underlying interest. The level of margin requirement should be related to the volatility of the underlying interest and especially be in line with the frequency of extreme price movements.


The trading of boom and crash options may be easier in a discrete-time market, organized for example after the close of the market of the underlying interest, than in a continuous market. The liquidity of the market for boom and crash options may be better after the close and then reliable official closing prices could be used to define the price change or return.


The settlement procedure for boom and crash options can copy the procedure for other options: physical delivery in the case of an individual stock, and cash payment in the case of an index.

3.4 An elementary property of boom and crash options


As options with a cliquet, boom and crash options contain a sure value and this sure value increases over the life-times of the options. This result comes from a simple mathematical property of the extremes: these variables are monotone. For example, the maximum of random variables increases with the length of the period over which it is selected.


Let BO(t, k, NV, f, T) denote the value at time t of a boom option issued at time 0 with striking return k, notional value NV, frequency f and time to expiration T. This value can be written as the sum of two terms
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The first term is the discounted value of a bond that pays NV(Max(Y1,t(f)-k, 0) at expiration date T (the money the investor is sure at time t to receive at expiration date T from the boom option). The second term is the value of a new boom option issued at time t with notional value NV, frequency f, time to expiration T-t and an ``updated'' striking return Max(k, Y1,t(f)).


Boom and crash options always contain a strictly positive time-value as the sure values can increase over the remaining life-times of the options with a strictly positive probability. Until the last basic time-interval, a return can be higher than the updated striking return.

3.5 An example


Consider an investor with a portfolio composed of stocks of the S&P 500 index (long position) during October 1987. The initial value of his portfolio is $1,000,000. Let us assume that the investor had the inspired idea of protecting his portfolio with a crash option to limit the impact of a potential stock market crash on his portfolio value. At the beginning of October he bought a crash option written on the S&P 500 index with a striking return of -3%, a notional value of $1,000,000, a daily frequency and a time to expiration of one month. This option is aimed at limiting the loss resulting from the largest daily price decline in the S&P 500 index, during October 1987, to 3% only.


During October 1987 percentage daily returns on the S&P 500 portfolio were as follows: 1.71 (October 1), 0.23, 0.00, ‑2.70, ‑0.21, ‑1.38, ‑0.98, ‑0.54, 1.66, ‑2.95, ‑2.34, ‑5.16, ‑20.46 (October 19), 5.33, 9.10, ‑3.92, -0.01, ‑8.28, 2.42, 0.04, 4.93, and 2.87 (October 30). The historic record of returns and cumulative returns is represented in Figure 3A. The money that the investor is sure to get at the expiration date, from his crash option, is given in Figure 3B. On October 16, the S&P 500 index price dropped by 5.16%; the owner of the crash option is then sure to receive at least $21,600 at the expiration date. This number is equal to the difference between the striking return (-3%) and the minimal return reached on October 16 (-5.16%) times the notional value ($1,000,000). From October 16 on, the money that he will get for sure from his crash option will increase in value only if the market drops by more than 5.16% during a single day. On the following trading day, on October 19, the price index dropped further, by 20.46%. The sure value of the crash option is now $174,600 (the difference between the striking return (-3%) and the minimal return reached on October 19 (-20.46%) times the notional value ($1,000,000)). Although the market dropped by 3.92% and 8.28% (returns lower than the crash option striking return of -3%) on October 22 and 26, respectively, this does not increase the sure value since these returns are greater than the minimal return reached by these dates. Over October 1987 the minimum variable Z22 is then equal to the -20.46% reached on October 19. At the expiration date the crash option is finally worth $174,600. Figure 3C represents the performance of the investor's portfolio in two cases: an unprotected portfolio and a portfolio protected with the crash option. In this example the use of a crash option limits the impact of the crash (-20.46%) on the portfolio value to a decline of -3%. The return on the investment during October 1987 is improved by around 17% by using the crash option: during October 1987 the value of the unprotected portfolio dropped by 21.76% while the value of the same portfolio protected by the crash option dropped by only 4.10%.

4. HEDGE PORTFOLIO AND PRICING FORMULA OF BOOM AND CRASH OPTIONS IN A PERFECT MARKET


Hedging and pricing are first considered in the classical case of a perfect, continuous Gaussian market. The hypothesis of normality is then relaxed; a more general pricing formula using the asymptotic extreme value distribution is then proposed to take into account the right frequency of extreme returns.

4.1 The classical approach


As stated in Black and Scholes (1973), the following assumptions are made: the short-term interest rate is known and is constant through time, and denoted r; the price of the underlying interest follows a random walk in continuous time with a variance proportional to the square of the asset price. The asset price denoted as S is governed by a geometric Brownian motion given by
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where the drift μ and the variance σ2 are assumed to be constant over time; the price of the underlying interest takes into account dividends paid on the stock (or the stocks included in the portfolio) and any distributions related to the change in the capital structure of the firm(s); there are no transaction costs of buying or selling stocks and bonds; investors can borrow any fraction of the price of a security to buy or hold it, at the short-term interest rate; and there are no penalties for short selling.


The hedge portfolio for a boom option can be structured as a string of forward start call options. To cover the interval [t, t+1], the investor buys, at time t, NV(e-r((T-t)/St call options on the underlying interest with striking price St([1+Max(k, Y1,t(f))] and maturity f (i.e., expiring at time t+1), whose value is denoted by C(St, St([1+Max(k, Yt(f))], f). At time 0, a part of the proceeds from the sale of the boom option is used to finance a portfolio used to buy these call options. From the point of time 0, this portfolio can be viewed as a contingent claim, whose value at the expiration date (time t) depends only on the price of the underlying interest. The value of the portfolio denoted by Vt+1 is the solution to the Cauchy problem with the partial differential equation
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subject to the boundary condition
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The exact composition of the portfolio is determined by computing the delta of the position equal to the partial derivative of the portfolio value with respect to the  price of the underlying interest,
[image: image13.wmf].
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SEQ Equation  \* ARABIC  \h13 Over the time-interval [0, t], the position is short in the underlying interest as an increase in the price of the underlying interest may decrease the price of call options to buy at time t.
 At time t, the composition of the portfolio is changed to buy call options. Over the time-interval [t, t+1], the portfolio of call options is then hedged with a long position in the underlying interest and a short position in the risk-free bond, as given in Black and Scholes (1973). At time t+1, the proceeds of call options bought at time t are invested in cash until the time to expiration of the boom option.


At any time, the price of the boom option is the sum of the values of the n contingent portfolios V1+V2+V3+...+VT-1+VT. The price of the boom option can also be computed by using formula (6) of the final payoff of the boom option
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where
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SEQ Equation  \* ARABIC  \h15is the risk-neutral distribution of the maximal return observed on the n basic time-intervals [0, 1], [1, 2], [2, 3], ..., [T-2, T-1], [T-1, T], each time-interval being of length f. According to equation (1), this distribution is equal to the nth power of the risk-neutral distribution of a return r(f), Qr(f). As the price of the underlying interest follows a Brownian motion, the latter distribution is a log-normal distribution with mean er(f-1 and variance
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The hedging strategy and pricing method are now illustrated with an example. As in section 2.5, an investor with a long position in the S&P 500 index during October 1987 is considered. The initial value of the portfolio is $1,000,000. At the beginning of October the investor bought a crash option written on the S&P 500 index with a striking return of 0%, a notional value of $1,000,000, a daily frequency and a time to expiration of one month. This crash option annihilates the impact of the largest daily decline in the index price on his portfolio value. The time-evolution of the crash option value and of the hedge portfolio are given in Table 3. Also given are the value and the decomposition of the basic portfolios of the hedge portfolio: the portfolios used to replicate the crash option over the period [0, t], whose combined values are equal to the discounted sure value of the crash option; the value of the portfolio of one-day put options used to replicate the crash option during the period [t, t+1]; and the portfolios used to buy put options over the remaining period [t+1, T]. In a perfect Gaussian market the crash option bought in the beginning of October is worth $19,137.39.
 It is hedged with a short position in stocks of -$49,017.68 and a long position in the risk-free bond of $68,155.06. The crash option can also be decomposed as a portfolio of put options worth $3,983.32 (equivalent to a short position in stocks of -$490,237.69 and a long position in the risk-free bond of $494,221.01) and contingent portfolios used to buy put options in the future worth $15,154.06 (equivalent to a long position in stocks of $441,220.01 and a short position in the risk-free bond of -$426,065.94). At the expiration date the crash option is finally worth $204,600.00.
 Because of the crash of October 19, 1987, the crash option finishes deeply in the money.

4.2 The extreme value approach


As suggested in section 2, the distribution of market price changes may be different from the Gaussian distribution. In particular, looking at extreme price changes, the Gumbel type of extreme value distribution, which is implied by normality, is strongly rejected in favor of the Fréchet type consistent with fat tails. A more general approach using the asymptotic extreme value distribution is then proposed to take into account the right frequency of extreme returns which is of particular importance for pricing boom and crash options. In this section I still assume a perfect, continuous market. Boom and crash options can be perfectly hedged and then be priced as if they existed in a risk-neutral world as shown by Harrison and Kreps (1981).


The asymptotic value at time 0 of a boom option with striking return k, notional value NV, frequency f, and time to expiration T, is given by
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SEQ Equation  \* ARABIC  \h17
(13)

where
[image: image18.wmf]Q

asymptotic

(f)

Y

T

1,



SEQ Equation  \* ARABIC  \h18is the risk-neutral asymptotic extreme value distribution of the maximal returns observed on the n basic time-intervals [0, 1], [1, 2], [2, 3], ..., [T-2, T-1], [T-1, T], each time-interval being of length f. This distribution is given by the formula
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SEQ Equation  \* ARABIC  \h19
(14)

where the parameters αn*(f), ßn*(f) and τ* are the risk-adjusted scale and location parameters and the risk-adjusted tail index. In order to get a finite price for the boom option the distribution of returns has to belong to the domain of attraction of the extreme value distribution with a tail index greater than minus one.


The extreme value approach includes the classical approach as a particular case: the risk-adjusted parameters are given by αn*(f)=αn(f), ßn*(f)=ßn*(f)-(μ(f-r(f) and τ*=τ=0
. The risk-neutral distribution differs from the historical distribution by the location parameter value only: the location parameter of the risk-neutral asymptotic distribution of extremes, ßn*(f), is simply equal to the location parameter of the historical asymptotic distribution of extremes ßn(f) minus the risk premium observed on a short basic time-interval, μ(f-r(f. The scale parameter and the tail index are unaffected by the change of distribution.


As pricing formula (13) is asymptotic, the time to expiration has to be long enough that the exact distribution of extreme returns can be safely replaced by the asymptotic distribution. Practically, a Sherman goodness-of-fit test can be used to assess the convergence of the asymptotic distribution.


A closed-form solution for the price of a boom option is
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where the function Γ is defined by
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SEQ Equation  \* ARABIC  \h21with x>0, and the function FY is given by formula (5).

4.3 Influence of the parameters


Consider next the influence of the following parameters on boom and crash options' prices: striking return, the three parameters of the asymptotic distribution of extremes (scale and location parameters and tail index), short-term interest rate, frequency, and time to expiration.

a) Striking return

As for classical call options, the higher the striking return, the lower the value of boom options as it is less likely they finish in the money. Similarly, the lower the striking return, the lower the value of crash options.


Table 4 gives the values of boom options with striking returns ranging from 0% to 25%, notional value of $1,000,000, daily frequency, and time to expiration of one year. Three cases are considered for the distribution of maximal returns:


1) The risk-neutral asymptotic extreme value distribution for maximal returns given by formula (15). The Fréchet extreme value distribution estimated in section 2 is used here with a risk-adjusted location parameter. This is consistent, for example, with a risk-neutral GARCH process, which leads to a Fréchet distribution with a tail index greater than -0.5 as shown by De Haan et al. (1989), and with which derivatives can be priced by arbitrage as shown by Duan (1995).


2) The risk-neutral distribution of maximal returns selected from an unconditional log-normal distribution for daily returns.


3) The risk-neutral distribution of maximal returns selected from a conditional GARCH process for daily returns. A GARCH(1,1) model, for which the expected variance is made conditional on the past squared innovation in returns and the past expected variance, is considered here. Over the period 1885-1993, the estimation of the equation of the expected variance denoted as ht is given by

ht = 1.13(10-6 + 0.109εt-12 + 0.881ht-1,
(16)

      (5.81(10-8)   (0.0017)     (0.0020)

where εt stands for the innovation in returns during the time-interval [t-1, t].


 As already emphasized, the assumption about the distribution is critical for pricing boom and crash options. For a 3% striking return, the boom option is worth $7,840.02 using the asymptotic Fréchet distribution, $1,407.07 in the case of log-normality and $5,770.24 in the case of the GARCH process; for a 5% striking return, a boom option is still worth $3,381.53 in the first case, almost nothing in the second case and $1,622.34 in the third case. Non-negligible boom option values are obtained with the GARCH model as the unconditional distribution of returns is fat-tailed (Bollerslev (1986)). However, the GARCH model does not fit very well the behavior of actual extreme returns as boom option values obtained using the GARCH are quite different from those obtained with the asymptotic Fréchet distribution.
 The decreasing relation between the boom option value and the striking return is represented in Figure 4.

b) Parameters of the asymptotic distribution of extremes

The value of boom and crash options is influenced by the three parameters of the asymptotic distribution of extremes: the scale and location parameters and the tail index. The larger the scale parameter, the higher the value of boom and crash options as the dispersion of extreme returns is higher. The higher the location parameter, the higher the value of boom options as the average size of maximal returns is higher; for crash options, the larger the location parameter, the lower the value as the average size of minimal returns is lower. The lower the tail index, the higher the value of boom and crash options as the distribution of basic returns is fatter.


The relative impact of each parameter varies with the striking return k as it is the truncated distribution of extreme returns,
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SEQ Equation  \* ARABIC  \h23in the case of minima, which matters in valuing boom and crash options. For low striking returns, boom and crash option values are mainly influenced by a change in the location parameter. For high striking returns, changes in the scale parameter and in the tail index have the greatest impact, as the tail of the extreme value distribution is mainly affected by these two parameters. This is illustrated in Figure 5 for boom options with striking returns of 0%, 3% and 5%.

c) Short-term interest rate

The short-term interest rate enters the pricing formula of boom and crash options in two ways: first, via the discount factor, e-r(T, and second, via the risk-neutral location parameter, ßn*(f). Note that this is the interest rate over the entire life of the option which appears in the discount factor (r(T), while this is the interest rate over a short basic time-interval which enters the risk-neutral location parameter (r(f). An increase in the interest rate decreases the discount factor and increases the location parameter. For crash options the two effects work in the same direction; the higher the short-term interest rate, the lower the crash option value. For boom options the two effects work in opposite directions. The influence of the short-term interest rate then depends on the relative force of each effect. For a boom option with a long time to expiration the first effect (a lower discount factor) may overcome the second effect (a higher location parameter). The relation is represented in Figure 6 for boom options with time to expiration of six months and one year. For the shortest maturity the boom option value is an increasing function of the interest rate, and for the longest maturity it is a decreasing function of the interest rate.

d) Frequency

Longin (1995a) investigates the distribution of extremes selected from basic returns of different frequency by considering time-aggregated returns corresponding to investment periods of one day, one week and one month. From a theoretical point of view, Feller (1971, p. 279) shows that if 1-Fr(f) varies regularly at infinity then the maximum of any convolution follows the same limit law. This proposition specifies our understanding of the asymptotic behavior of time-aggregated returns. From the central limit theorem one already knows that values around the center of the distribution are drawn asymptotically from a normal law if the variance is finite, or from a stable Paretian law if the variance is infinite. Extreme value theory specifies the behavior of the tails of the time-aggregated distribution as it shows that they are stable under time-aggregation. Applied to finance, Feller's interesting mathematical result says that standardized extremes from returns with different frequencies are drawn from Fréchet distributions with the same tail index value. However, the scale and location parameters of the distribution of observed extremes can vary. The distribution of extremes is found empirically to be stable under temporal aggregation: extremes selected from daily, weekly and monthly returns follow a Fréchet distribution. The tail index is stable across frequency while the scale and location parameters increase with the length of the investment period, suggesting that extremes from time-aggregated returns become more dispersed and larger. The lower the frequency f, the higher the value of boom and crash options. This relation is represented in Figure 7 for a boom option.

e) Time to expiration

One effect of a longer time to expiration works in the same way as larger scale and location parameters, which imply higher boom and crash options' values. The scale and location parameters αn(f) and ßn(f) depend on the number of observations from which the extremes are selected. For a given frequency f, a longer time to expiration T means a larger number of basic time-intervals n, the two variables being related by T=n(f. Gumbel (1958, p. 154) shows that the Fréchet distribution of maxima expands and shifts to the right (i.e., the scale and location parameters increase) at the same time as the variable n increases. The tail index is unaffected by the variable n as it is an intrinsic parameter of the process of returns. Another effect of a longer time to expiration is a lower discount factor, which implies lower boom and crash options' values. The preponderance of one of the factors remains an empirical issue as the behavior of the scale and location parameters is largely unspecified. Empirically, the longer the time to expiration, the higher the value of boom and crash options, as illustrated in Figure 8 for a boom option.


The effects of the parameters identified as determining factors of boom and crash options' values are summed up in Table 5.

5. CONCLUSION


This paper introduces new options that could enhance the management of financial assets during periods of high volatility. Boom and crash options may improve the performance of portfolio insurance techniques, which work badly during periods of market stress. Although a given framework for the trading of boom and crash options is suggested, potential users may have a different opinion concerning the choice of the underlying interest, the definition of the payoff, the type of exercise, the settlement procedure... Boom and crash options as defined in this paper deal with the largest rise and the largest fall in the asset price; similar options may consider the second, the third, the nth largest rises and falls in asset prices; combinations of such boom and crash options may be traded as well. There is also strong evidence that the process of financial asset prices is heteroskedastic, a package including both a boom option and a crash option may be of some interest for investors.


This paper first deals with the hedging and pricing of boom and crash options in a perfect, continuous Gaussian market. The assumption of normality however leads to underestimate the weight of the distribution tails which are central to the pricing of such options. Reality may be better described with a Fréchet market characterized by large price movements. An asymptotic pricing formula based on extreme value theory is then derived to take into account the right amount of extremes.


Further research may consider a particular feature observed in reality that is not addressed in this paper: extreme price movements are usually associated with discontinuities in the price and trading processes. For example, the biggest stock market crashes resulted from price jumps while the market was closed by the Exchange for an unspecified time. This feature may make boom and crash options look even more attractive instruments for buyers as they complete the market, but also more difficult to hedge for issuers during periods of extreme volatility. Such a difficulty may be overcome with the special institutional arrangement that I propose below.


As boom and crash options appear to have certain similarities to insurance products, the writing of such contracts should be left to big financial institutions. A special role may also be given to the Central Bank, which may act as a reinsurance company for these financial institutions acting as insurance companies. For example, a big financial institution writing crash options with a striking return of -3% could limit its exposure to the very large stock market crashes like 1929 and 1987 by buying from the Central Bank a crash option with a striking return of -10%. As the hedge portfolio composed of the underlying interest and the risk-free bond may poorly replicate boom and crash options during the most volatile periods, such an institutional arrangement may help to solve the hedging problem. Note that such an activity of the Central Bank may rationalize its role of lender of last resort, sometimes undertaken during stock market crashes. This paper would then provide the market price that the Central Bank should charge for such a service.
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Table 1A. Estimation of the asymptotic distribution of maximal daily returns observed over a year.

	PRIVATE 
Type of distribution estimated
	Scale parameter

αn(f)
	Location parameter

ßn(f)
	Tail

index

τ
	Log-likelihood

value

(LR Test, p-value)

	Maximal returns

Gumbel distribution
	1.247

(0.125)
	2.724

(0.093)
	0
	-209.593

	Maximal returns

Fréchet distribution
	0.833

(0.059)
	2.462

(0.068)
	-0.369

(0.071)
	-169.090

(LR=81.01; p<10-5)


Table 1B. Estimation of the asymptotic distribution of minimal daily returns observed over a year.

	PRIVATE 
Type of distribution estimated
	Scale parameter

αn(f)
	Location parameter

ßn(f)
	Tail

index

τ
	Log-likelihood

value

(LR Test, p-value)

	Minimal returns

Gumbel distribution
	1.489

(0.142)
	-2.814

(0.105)
	0
	-220.414

	Minimal returns

Fréchet distribution
	0.999

(0.072)
	-2.538

(0.082)
	-0.338

(0.073)
	-186.698

(LR=67.43; p<10-5)


These tables give parameters' estimates of the distributions of extreme returns. Asymptotic standard errors are given in parentheses. Maximal (minimal) return corresponds to the highest (lowest) daily return reached over a year containing on average 278 trading days over the period 1885-1993. Estimates of the three parameters (αn(f), ßn(f) and τ) are obtained using the maximum-likelihood method and reported for the constrained Gumbel distribution (τ=0) and for the unconstrained Fréchet distribution. The likelihood value of each model is reported in the last column with the likelihood ratio test (LR) between the two models and the p-value in parentheses. The statistic of the test is asymptotically distributed as a chi-square with one degree of freedom.

Table 2A. Occurrence of maximal returns.

	PRIVATE 

Level r(f)
	Probability of a maximal daily return greater than r(f)

	
	(1) Empirical
	(2) Fréchet
	(3) Log-normal 

	0%
	100.00
	100.00
	100.00

	1%
	100.00
	100.00
	100.00

	2%
	81.65
	84.43
	99.96

	3%
	40.37
	42.90
	44.25

	4%
	24.77
	21.70
	1.92

	5%
	15.60
	12.17
	0.03

	10%
	3.67
	1.85
	0.00

	15%
	0.92
	0.62
	0.00

	20%
	0.00
	0.28
	0.00

	25%
	0.00
	0.00
	0.15


This table gives the probability of a maximal daily return being higher than a given level. A maximal return is defined as the largest daily return on a portfolio of the most traded stocks on the New York Stock Exchange observed over a trading year. The database contains 109 years covering the period 1885-1993. Three different methods are used to compute the probability: 1) the empirical probability is computed using observed maximal returns; 2) maximal returns are assumed to be drawn from the asymptotic Fréchet extreme value distribution; and 3) maximal returns are assumed to be selected from daily returns drawn from a log-normal distribution.

Table 2B. Occurrence of minimal returns.

	PRIVATE 

Level r(f)
	Probability of a minimal daily return lower than r(f)

	
	(1) Empirical
	(2) Fréchet
	(3) Log-normal

	0%
	100.00
	100.00
	100.00

	-1%
	100.00
	99.98
	100.00

	-2%
	82.56
	83.65
	99.81

	-3%
	43.12
	47.85
	30.17

	-4%
	27.52
	26.27
	0.78

	-5%
	21.10
	15.35
	0.01

	-10%
	1.83
	2.38
	0.00

	-15%
	0.92
	0.75
	0.00

	-20%
	0.92
	0.33
	0.00

	-25%
	0.00
	0.17
	0.00


This table gives the probability of a minimal daily return being lower than a given level. A minimal return is defined as the lowest daily return on a portfolio of the most traded stocks on the New York Stock Exchange observed over one trading year. The database contains 109 years covering the period 1885-1993. Three different methods are used to compute the probability: 1) the empirical probability is computed using observed minimal returns; 2) minimal returns are assumed to be drawn from the asymptotic Fréchet extreme value distribution; and 3) minimal returns are assumed to be selected from daily returns drawn from a log-normal distribution.

Table 3. Price and hedge portfolio of a crash option during October 1987, assuming a perfect Gaussian market.

	PRIVATE 
(1) S&P 500 index price at time t
	(2) Return rt(f)

[Updated striking return

Min(k, Z1,t(f))]
	(3) Crash option

dollar value

(Stocks; Bonds)
	Dollar value and decomposition of the basic portfolios of the hedge portfolio

	
	
	
	(4) Time-interval [0, t]

(Stocks; Bonds)
	(5) Time-interval [t, t+1]

(Stocks; Bonds)
	(6) Time-interval [t+1, T]

(Stocks; Bonds)

	Sep 30, 1987

321.83
	-

[0.00%]
	19,137.39

(‑49,017.68; 68,155.06)
	0.00

(0.00; 0.00)
	3,983.32

(‑490,237.69; 494,221.01)
	15,154.06

(441,220.01; ‑426,065.94)

	Oct 1, 1987

327.33
	+1.71%

[0.00%]
	18,932.00

(‑50,399.75; 69,331.75)
	0.00

(0.00; 0.00)
	3,983.95

(‑490,314.40; 494,298.35)
	14,948.05

(439,914.65; ‑424,966.59)

	Oct 2, 1987

328.07
	+0.23%

[0.00%]
	18,712.30

(‑52,992.05; 71,704.35)
	0.00

(0.00; 0.00)
	3,984.57

(‑490,391.13; 494,375.70)
	14,727.73

(437,399.08; ‑422,671.35)

	Oct 5, 1987

328.08
	+0.00%

[0.00%]
	18,492.73

(‑55,348.23; 73,840.96)
	0.00

(0.00; 0.00)
	3,985.19

(‑490,467.87; 494,453.06)
	14,507.54

(435,119.64; ‑420,612.10)

	Oct 6, 1987

319.22
	-2.70%

[-2.70%]
	27,117.31

(‑3,354.01; 30,471.32)
	26,924.06

(0.00; 26,924.06)
	10.82

(‑3,453.82; 3,464.64)
	182.43

(99.81; 82.62)

	Oct 7, 1987

318.54
	-0.21%

[-2.70%]
	27,109.97

(‑3,361.62; 30,471.59)
	26,928.27

(0.00; 26,928.27)
	10.82

(‑3,454.90; 3,465.72)
	170.88

(92.74; 78.14)

	Oct 8, 1987

314.16
	-1.38%

[-2.70%]
	27,102.74

(‑3,370.27; 30,473.02)
	26,932.49

(0.00; 26,932.49)
	10.82

(‑3,454.90; 3,465.72)
	159.44

(84.63; 74.81)

	Oct 9, 1987

311.07
	-0.98%

[-2.70%]
	27,096.80

(‑3,376.38; 30,473.19)
	26,936.70

(0.00; 26,936.70)
	10.82

(‑3,455.44; 3,466.27)
	149.28

(79.06; 70.22)

	Oct 12, 1987

309.39
	-0.54%

[-2.70%]
	27,090.02

(‑3,380.63; 30,470.66)
	26,940.92

(0.00; 26,940.92)
	10.82

(‑3,455.98; 3,466.81)
	138.28

(75.35; 62.93)

	Oct 13, 1987

314.52
	+1.66%

[-2.70%]
	27,084.50

(‑3,384.56; 30,469.06)
	26,945.13

(0.00; 26,945.13)
	10.83

(‑3,456.52; 3,467.35)
	128.54

(71.96; 56.58)

	Oct 14, 1987

305.23
	-2.95%

[-2.95%]
	29,499.57

(‑1,560.49; 31,060.06)
	29,444.66

(0.00; 29,444.66)
	4.62

(‑1,574.50; 1,579.12)
	50.29

(14.02; 36.27)

	Oct 15, 1987

298.08
	-2.34%

[-2.95%]
	29,498.62

(‑1,564.66; 31,063.29)
	29,449.27

(0.00; 29,449.27)
	4.62

(‑1,574.75; 1,579.37)
	44.73

(10.09; 34.65)

	Oct 16, 1987

282.70
	-5.16%

[-5.16%]
	51,419.48

(-0.10; 51,419.58)
	51,419.48

(0.00; 51,419.48)
	0.00

(‑0.10; 0.10)
	0.00

(0.00; 0.00)

	Oct 19, 1987

224.84
	-20.46%

[-20.46%]
	204,312.07

(0.00; 204,312.07)
	204,312.07

(0.00; 204,312.07)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 20, 1987

236.83
	+5.33%

[-20.46%]
	204,344.04

(0.00; 204,344.04)
	204,344.04

(0.00; 204,344.04)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 21, 1987

258.38
	+9.10%

[-20.46%]
	204,376.02

(0.00; 204,376.02)
	204,376.02

(0.00; 204,376.02)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 22, 1987

248.25
	-3.92%

[-20.46%]
	204,408.00

(0.00; 204,408.00)
	204,408.00

(0.00; 204,408.00)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 23, 1987

248.22
	-0.01%

[-20.46%]
	204,439.99

(0.00; 204,439.99)
	204,439.99

(0.00; 204,439.99)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 26, 1987

227.67
	-8.28%

[-20.46%]
	204,471.98

(0.00; 204,471.98)
	204,471.98

(0.00; 204,471.98)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 27, 1987

233.19
	+2.42%

[-20.46%]
	204,503.98

(0,00; 204,503.98)
	204,503.98

(0.00; 204,503.98)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 28, 1987

233.28
	+0.04%

[-20.46%]
	204,535.98

(0.00; 204,535.98)
	204,535.98

(0.00; 204,535.98)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 29, 1987

244.77
	+4.93%

[-20.46%]
	204,567.99

(0.00; 204,567.99)
	204,567.99

(0.00; 204,567.99)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)

	Oct 30, 1987

251.79
	+2.87%

[-20.46%]
	204,600.00

(0.00; 204,600.00)
	204,600.00

(0.00; 204,600.00)
	0.00

(0.00; 0.00)
	0.00

(0.00; 0.00)


This table gives the price and the hedge portfolio of a crash option during October 1987. A crash option written on the S&P 500 index with a striking return of 0%, a notional value of $1,000,000, a daily frequency and a time to expiration of one month is considered. The crash option is first proposed for trading at the end of the day of September 30, 1987. The expiration date is October 30, 1987. The first column recalls the S&P 500 index price at the end of day t. The second column gives the return rt(f) observed during time-interval [t-1, t] and the updated striking return of the crash option below in brackets. The third column presents the dollar value of the crash option at the end of each day t and the decomposition of the hedge portfolio in stocks and bonds below, in parentheses, assuming a perfect market and a geometric Brownian motion for the index price. A Monte Carlo method using 1,000,000 simulations is used to compute the price and the delta of the crash option. The short-term rate and is assumed to be constant and equal to 4.35% per year. The variance is also assumed to be constant and equal to 17.02% in yearly units. The last three columns provide the dollar value and the decomposition of the basic portfolios of the hedge portfolio as presented in section 3. Column (4) gives the total value of the portfolios used to replicate the crash option over the time-interval [0, t], which is equal to the discounted sure value of the crash option. Column (5) gives the value of the portfolio of one-day put options used to replicate the crash option during the time-interval [t, t+1]. Column (6) gives the value of the portfolios used to buy put options over the remaining time-interval [t+1, T].

Table 4. Comparison of boom option values.

	PRIVATE 
Striking return of the boom option k
	Boom option dollar value BO

	
	(1) Asymptotic

Fréchet
	(2) Exact

log-normal
	(3) Exact

GARCH

	0.00%
	32,500.36
	28,425.49
	31,032.50

	1.00%
	22,926.03
	18,851.16
	21,458.18

	2.00%
	13,722.71
	9,277.09
	12,113.59

	3.00%
	7,840.02
	1,407.07
	5,770.24

	4.00%
	4,927.70
	42.32
	2,903.61

	5.00%
	3,381.53
	0.52
	1,622.34

	10.00%
	1,023.53
	0.00
	242.23

	15.00%
	507.99
	0.00
	78.95

	20.00%
	309.39
	0.00
	36.85

	25.00%
	210.75
	0.00
	21.15


This table gives the dollar value of boom options with striking returns ranging from 0% to 25%, a notional value of $1,000,000, a daily frequency and a time to expiration of one year. The boom option values are obtained using three different distributions of extremes discussed in section 5.1: the risk-neutral asymptotic Fréchet distribution of maximal returns in column (1), the risk-neutral exact distribution of maximal returns selected from an unconditional log-normal process in column (2), and the risk-neutral exact distribution of maximal returns selected from a conditional GARCH(1,1) process in column (3). The parameters of these distributions are estimated using the extended Schwert database of returns of an index of stocks traded on the NYSE for the period 1885-1993. For the first case, estimates of the Fréchet distribution of maximal returns can be found in Table 1A; the risk-neutral location parameter is computed using a risk-free rate assumed to be constant and equal to 4.35% per year, implying an equity premium of 6% over the entire period. For the second case, the same value for the risk-free rate is taken and the variance is assumed to be constant and equal to 17.02% in yearly units. For the third case, estimates of the GARCH(1,1) process are given in equation (16) in the text; the past conditional variance at the beginning of the period is set at its unconditional level.

Table 5. Some determinants of boom and crash options' value.

	PRIVATE 

Determining factors
	Effect of increase

	
	Boom option value
	Crash option value

	Striking return k
	(
	(

	Notional value NV
	(
	(

	Scale parameter αn
	(
	(

	Location parameter ßn
	(
	(

	Tail index τ
	(
	(

	Short-term interest rate r
	( (
	(

	Frequency f
	(
	(

	Time to expiration T
	(
	(


This table indicates the effect of an increase of each parameter on the value of boom and crash options.
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     � As stressed by Rubinstein and Leland (1981) the accuracy of portfolio insurance (based on the replication of options with positions in stock and cash) critically depends on the process followed by the market price: the possibility of gap openings, jump movements and unanticipated changes in volatility may undermine the strategy during periods of market stress. The stock market crash of October 1987 also highlighted the importance of transaction costs as explained by Rubinstein (1988) and the functioning of financial markets as emphasized by the CFTC report (1987, pp. 55-61).


     � The Brady report (1988) partly blames program trading (portfolio insurance and index arbitrage) for the stock market crash of October 1987.


     � See The Wall Street Journal (October 17, 1988).


     � See Goldman, Sosin and Gatto (1979) and Conze and Viswanathan (1991) for a presentation of lookback options and their pricing.


     � The remainder of this section presents theoretical results for the maximum only, since the results for the minimum Z1,T(f) can be directly deduced from those of the maximum by transforming the random variable r(f) into -r(f), by which maximum becomes minimum and vice versa. The following relation is used: Z1,T(f) ( Min(r1(f), r2(f), r3(f), ..., rT-1(f), rT(f)) = - Max(-r1(f), -r2(f), -r3(f), ..., -rT-1(f), -rT(f)).


     � I thank William G. Schwert for kindly providing the database. A detailed description of the data is given in Schwert (1990).


     � A futures index may be preferred to a stock index because of the problems in the stock market during highly volatile periods (lack of liquidity and informationless prices resulting from trading halts in particular stocks and the difficulty of getting on-time stock prices).


     � See Longin (1995b) for a method based on extreme price movements to set margin levels in derivative markets.


     � An increase in S leads to an increase in the probability of a higher striking price because of a higher value of Max(k, Y1,t(f)).


     � By comparison, the price of a put option and of a lookback option on the maximum issued at the money in the beginning of October to protect a portfolio of $1,000,000 over October would be respectively, $17,817.91 and $37,985.05. For longer time to expiration, a crash option is much cheaper than these options. For example, for one-year maturity options, the prices are: $32,706.93 for a crash option, $47,275.36 for a put option, and $148,755.51 for a lookback option on the maximum.


     � By comparison, a put option and a lookback option on the maximum issued at the money in the beginning of October to protect a portfolio of $1,000,000 would have been worth at the end of the month, respectively, $217,630.43 and $237,050.62. Note that such options would have been worth nothing at maturity if the market had come back to its pre-crash level, while a crash option would not have been influenced by the post-crash price history as it contains a cliquet.


     � Such an assertion directly comes from the formulae relating the parameters of the asymptotic extreme value distribution to the parameters of the basic process as given in Leadbetter et al. (1983, pp. 20-21).


     � Longin (1995a) finds that the asymptotic distribution of extreme returns selected over a period longer than one semester describes very well the behavior of observed extreme returns. The longer the time to expiration of boom options, the more accurate the asymptotic pricing formula. Numerical values show that the pricing error is small: for example, in the case of normality, the price of a boom option with a striking return of 0% and a maturity of one year is $28,425.49 using the exact distribution of maximal returns and $28,805.29 using the asymptotic Gumbel distribution, a percentage difference around 1%. Boom options with a short maturity may be difficult to price with great precision. However, the trading of such options would be likely small as investors may roll over their positions as time goes on.


     � As noted by Duan (1995, p.15), other processes of the GARCH family may be considered to price options. For example, asymmetric or threshold GARCH processes may give more realistic boom and crash option values.
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