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BEYOND THE VAR

Beyond the VaR

FrRANCOIS M. LONGIN

Value at risk (VaR) as a standard measure of mar-
ket risks has been widely implemented by financial
institutions. A natural question with respect to risk
management relates to the profile of losses beyond
the VaR. This question is especially relevant when
the distribution of asset returns is fat-tailed, or when
the position includes options.

This article uses the concept of BVaR in order to take
into account the profile of losses beyond the VaR.
Technically speaking, this corresponds to the statisti-
cal mean of the losses exceeding the VaR. While the
VaR focuses on the frequency of extreme events,
BVaR integrates both the frequency and the size of
extreme events.

alue at risk (VaR) is now considered

a standard measure of market risks,

and has been widely implemented

by financial institutions. The VaR of

a market position is a single number attempt-

ing to summarize the risk of that position. It is

defined as the worst expected loss of the posi-

tion over a given period of time, at a given con-

fidence level. For example, for a probability

level of 99%, a VaR equal to $1 million means

that the loss of the position should not exceed

$1 million in 99 cases out of 100 on average.!

A natural question is how much a posi-

tion can lose on the exceptional hundredth

case. This simple question is the basis for the
motivation of this article.

Assuming a Gaussian distribution for the

returns on the position, VaR is a sufficient

statistic to analyze the risk of a position, as it is
directly related to the standard deviation of the
distribution. For example, the VaR computed
with a probability level of 99%, denoted by
VaR (99%), is linked to the standard deviation
O by the relationship: VaR (99%) = 2.3260.
In the Gaussian case, knowledge of the
VaR also lets us know the profile of the losses
beyond the VaR. That is, whatever the level
of market volatility, the VaR computed with
a probability level of 99.9%, which is equal to
3.0900, can always be obtained from the VaR
computed with a probability level of 99% by
the relationship VaR (99.9%) = 1.328VaR (99%).
In general, however, VaR does not give
a full picture of the risk of a position, as more
information is needed to fully understand its
risk characteristics. First, the distribution of
basic asset returns themselves may not be Gaus-
sian. In this case, for a given probability level,
a non-Gaussian distribution may give the same
VaR number as the Gaussian distribution, but
may present a very different distribution of
the losses exceeding the VaR. The losses
exceeding the VaR may be concentrated near
the VaR, as for the Gaussian distribution, or
may be widely spread beyond the VaR.
Second, even if the distribution of basic
asset returns is Gaussian, the distribution of the
returns on the position itself may not be Gaus-
sian if the position is non-linear because of the
presence of options. For traders maximizing
their return under a VaR constraint, Vorst
[2000] shows that it is optimal to implement
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strategies betting on extreme events and generating great
losses exceeding the VaR.

Even rational behavior may lead to a profile of losses
beyond the VaR very different from the one associated
with the basic assets.? Basak and Shapiro [1999] show that
an economic agent maximizing wealth (or utility) under
a VaR constraint would suffer larger losses than an eco-
nomic agent that does not consider this risk manage-
ment technique.

The first part of this article develops a simple statis-
tical framework to define the expected loss beyond the
VaR.. Called BVaR, this risk measure takes into account
the profile of the losses beyond the VaR. While the VaR.
focuses on the frequency of extreme events, BVaR inte-
grates both the frequency and the size of extreme events.

The second part presents an empirical study to illus-
trate this concept. VaR and BVaR are computed for both
linear and non-linear positions in the U.S. equity market.
BVaR is useful in risk management and financial regulation.

I. BVAR: THE EXPECTED LOSS
BEYOND THE VAR

The theoretical framework used to define the con-
cept of BVaR is presented first. We analyze application of
the concept in two cases: when the distribution of basic
asset returns is fat-tailed, and when the position is non-
linear with the presence of options.

Theoretical Framework for BVaR

We look at evaluation of the risk beyond the VaR
using simple statistics. The return on a market position
over a given period of time is denoted by R. The asso-
ciated probability density function is denoted by f, and
the cumulative distribution function by Fy,. The VaR of
a position computed with the statistical distribution Fp and
for a probability level p is denoted by VaR(Fy, p) to
emphasize the dependence on these two inputs.

Expressed as a positive number and as a percentage
of the initial value of the position, the VaR of the posi-
tion is given by

VaR(Fy,p) = —F (1-p) (1)

The risk beyond the VaR is measured by the aver-
age of the losses exceeding the VaR as suggested in Lon-
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gin [1997a].? Denoted by BVaR, this measure corre-
sponds to the expectation of the return R, conditional on
its being lower than —VaR.. Like the VaR, the BVaR of a
position depends on the statistical distribution Fy and on
the probability level p. It is given by

BVaR(Fy,p) = —E(R | R<-VaR)
B R fr (x)dx

—00

Fu (—VaR) @)

BVaR incorporates both the frequency of the losses
beyond the VaR (in the denominator) and the size of the
losses beyond the VaR (in the numerator) by taking into
account the first moment of the distribution of the losses
exceeding the VaR.

One difficulty in implementing tail-based risk mea-
sures such as BVaR is their poor statistical properties. For
example, the BVaR estimated with the historical distri-
bution can involve only a few observations ([1 — p]% of
the database with p being usually close to one), and may
then present a high estimation risk.

From a financial point of view, the BVaR measure
may be appealing for several reasons. As shown in Artzner
et al. [1999], it is a “coherent” measure of risk. Specifi-
cally, unlike VaR, BVaR satisfies the subadditivity prop-
erty; that is, the risk of a global position is less than the
sum of the risks of different elements of the position.

Basak and Shapiro [1999] also show that a BVaR sort
of constraint for investors would lead to optimal strate-
gies for which the magnitude of the extreme losses is under
control. Their results based on simulations show that
considering the first moment of the distribution of the
losses beyond the VaR, i.e., the expected loss beyond the
VaR or BVaR, may be sufficient to obtain a desirable loss
profile. Further research in this direction would certainly
be fruitful to understand how tail-based risk measures affect
financial decisions.

BVaR and Fat-Tailed Distributions

A well-known fact is that most of the distributions
of asset returns are fat-tailed, meaning that the number
of observations contained in the tails (corresponding to
large negative and positive returns) is actually higher than
predicted by the Gaussian distribution. Such a fact can be
rigorously assessed using extreme value theory (see Lon-
gin [1993] for a presentation). The degree of fatness of a
distribution is characterized by a parameter called the tail
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ExHIBIT 1

Distributions of Returns Exceeding VaR for Thin-Tailed and Fat-Tailed Distributions
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index. According to the tail index value, negative, null, or
positive, the distribution is fat-tailed, thin-tailed, or
bounded. For example, the Gaussian distribution implies
a tail index value equal to zero.

Jansen and De Vries [1991], Loretan and Phillips
[1994], Longin [1996], and Booth et al. [1997] find a fat-
tailed distribution for the U.S. equity market. Longin and
Solnik [2001] have recently extended empirical studies
focused on the U.S. to other major equity markets, and
find that the shape of the distribution tails varies from one
market to another. Similar results are obtained for foreign
exchange rates by Koedijk, Schafgans, and De Vries [1990]
and Longin [1997b], for interest rates by Boulier, Dalaud,
and Longin [1997], for commodity markets by Longin
[1999], and for emerging markets by Legras [2000].

When the distribution of the return on the position
is fat-tailed, two statistical distributions of asset returns can
lead to the same VaR number but to different profiles of
the losses exceeding the VaR. Exhibit 1 represents the dis-
tributions of returns exceeding the VaR obtained from two
distributions: the thin-tailed Gaussian distribution and
the fat-tailed stable Paretian distribution.*

The two distributions are calibrated so that they give
the same VaR number for a probability level of 99%: $2.33
for a position with an initial value of $100, or equivalently
2.33% of the initial value of the position. Note that the
losses exceeding the VaR (lower than —VaR) are concen-
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trated near the VaR for the Gaussian distribution, while they
are widely spread beyond the VaR for the stable Paretian
distribution. This result can be quantified by computing the
expected loss beyond the VaR. The BVaR is higher for the
fat-tailed stable Paretian distribution (3.22%) than for the
thin-tailed Gaussian distribution (2.66%).

For a given distribution of returns, the BVaR can
always be computed by simulation from Equation (2) as
a function of the VaR. An asymptotic relationship (valid
for high levels of the probability used to compute the VaR)
can sometimes be derived analytically. For example, for
a standard Gaussian distribution (with the mean equal to
zero and the variance equal to one), it can be shown that
the asymptotic relationship between BVaR and VaR is
given by (see Embrechts, Klippelberg, and Mikosch
[1997, pp. 160-162]):

BVaR = VaR + b L
2 VaR

)

Equation (3) implies that, assuming the thin-tailed
Gaussian distribution for the returns on the position, the
losses beyond the VaR are concentrated near the VaR.
Moreover, the higher the VaR, the more concentrated the
losses beyond the VaR as the difference (BVaR — VaR)
converges toward zero.
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ExHIBIT 2
Value of Linear and Non-Linear Positions
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For a standard stable Paretian distribution (with the
location parameter equal to zero, the scale parameter
equal to one, the skewness parameter equal to zero and
a characteristic exponent 0, with o > 1), the relationship
between BVaR and VaR is given by

VaR
oa-—1

BVaR = VaR +

(4)

Equation (4) implies that, assuming the fat-tailed
stable Paretian distribution for returns, the losses beyond
the VaR are widely spread beyond the VaR. Moreover, the
higher the VaR, the more spread the losses beyond the VaR
as the difference (BVaR — VaR) diverges toward infinity.
This result also depends on the degree of fatness of the dis-
tribution tail measured by the characteristic exponent.
The fatter the tail (i.e., the lower the characteristic expo-
nent), the more spread the losses beyond the VaR.

BVaR and Non-Linear Positions

For a non-linear position, or a position evolving
over time according to a dynamic strategy that replicates
a non-linear pay-off, BVaR is also a useful measure for ana-
lyzing the risk beyond the VaR. As in Vorst [2000], we con-
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sider here a position with options. Let us build a non-lin-
ear position with a long position in the underlying asset,
selling out-of-the-money put options and buying out-of-
the-money call options. More precisely, the position is short
NP put options and long N call options with strike prices
denoted by K" and K!. The purchase of the call options
is assumed to be financed by the sale of the put options
(Nrep = N<IC). To focus on the effect of non-linearity
on VaR and BVaR, the maturity of the call and put
options, denoted by T, is assumed to be equal to the hold-
ing period used to compute the VaR.>

The strike price for the put options is chosen to be
equal to or lower than (100 — VaR)% of the initial value
of the underlying asset (where VaR is expressed as a pos-
itive number and as a percentage of the initial value of the
position). This is modeled by K" < S (1 — VaR/100),
where S, is the initial value of the underlying asset. In this
case, the VaR of the non-linear position does not depend
on the number of put options included in the position,
as the probability level of losses due to the put options is
equal to or lower than the probability level used to com-
pute the VaR.

The value of the non-linear position is denoted by
V. The change in value of the non-linear position, V.. -
V,, is equal to
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EXHIBIT 3

Distributions of Returns Exceeding VaR for Linear and Non-Linear Positions
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This example is graphed in Exhibit 2. Two types of
position are considered: a linear position in the underly-
ing asset, and non-linear positions that involve options.
The linear position consists of a long position of $100
invested in the underlying asset. Assuming a standard
Gaussian distribution for the return on the underlying
asset, the VaR of the linear position computed with a
probability level of 99% is equal to $2.33, or equivalently
2.33% of the initial value of the position.

The non-linear positions are composed of a long
position in the underlying asset, writing out-of-the-
money put options, and buying out-of-the-money call
options. A leveraged position uses one put option, while
a highly leveraged position uses five put options.

Exhibit 2 represents the value of the different posi-
tions. As the call options are assumed to be financed by
selling the puts, the initial value of the non-linear posi-
tions is still equal to $100. The value of the strike of the
put options is chosen to be equal to $97.67, that is to say,
2.33% lower than the initial value of the position. With
such a value for the strike of the put options, the proba-
bility level of losses due to put options is exactly equal to
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the probability level used to compute the VaR (99%). In
this way, the VaR of the non-linear positions is exactly
equal to the VaR of the linear position (2.33).

Exhibit 3 represents the distribution of returns
exceeding the VaR (lower than —VaR) for the three posi-
tions. As revealed in the graph, the losses exceeding the
VaR are concentrated next to the VaR for the linear posi-
tion (under the assumption of normality for the returns on
the underlying asset), while the losses are widely spread
beyond the VaR for the non-linear positions.®

Moreover, the dispersion of the losses beyond the
VaR increases with the degree of leverage. This result
can be quantified by computing the expected loss
beyond the VaR. The BVaR is higher for the non-lin-
ear positions (3.00% of the initial value for a leveraged
position and 4.36% for a highly leveraged position)
than for the linear position (2.66%). Although the VaR.
is identical for the three positions, there is a difference
in BVaR between linear and non-linear positions, and
this difference increases with the degree of leverage of
non-linear positions.

II. APPLICATION TO THE
U.S. EQUITY MARKET

We demonstrate this theoretical framework by appli-
cation to various positions in the U.S. equity market.
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EXHIBIT 4

VaR and BVaR for Linear Positions in S&P 500 Index Computed with One-Day Returns

Panel A. Long Position

p=0.9 p=0.99 p=0.999
VaR BVaR BVaR-VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR
VaR VaR VaR
Historical 0.89 1.47 65.17 2.16 3.08 42.59 3.91 6.97 78.26
Extreme-Value 0.69 2.52 265.22 1.55 3.00 93.55 3.81 6.63 74.02
Unconditional Gaussian  1.04 1.44 38.46 1.92 221 15.10 2.57 2.81 9.34
EWMA 0.80 1.12 40.00 1.50 1.78 15.33 2.01 2.19 8.96
GARCH 0.81 1.13 39.51 1.52 1.76 15.79 2.05 2.24 9.27
Panel B. Short Position
p=09 p=0.99 p=0.999
VaR BVaR BVaR-VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR

VaR VaR VaR
Historical 0.95 1.53 61.05 225 2.99 32.89 4.09 4.98 21.76
Extreme-Value 1.15 2.42 110.43 1.68 2.85 69.64 3.70 4.89 32.16
Unconditional Gaussian 1.14 1.54 35.09 2.03 2.31 13.79 2.67 291 8.99
EWMA 0.90 1.22 35.56 1.60 1.83 14.38 2.11 2.30 9.00
GARCH 0.95 1.27 33.68 1.67 1.90 13.77 2.19 2.38 8.68

Data Statistical models can also be differentiated according to

The database consists of daily closing prices of the
Standard & Poor’s 500 index over the period January
1962-December 1999 consisting of 9,495 observations.
These data are widely available and used here to allow an
easy replication of the results.

Returns are computed for two frequencies: daily and
biweekly. Given the daily frequency of the database, the
use of one-day returns leads to the maximum number of
observations that can be used to estimate both VaR and
BVaR. Ten-day returns are also used here, as the regula-
tion on market risks imposes the choice of this return fre-
quency for internal models developed by financial
institutions.”

Statistical Models

Statistical models used to compute the VaR and
BVaR of a position can be distinguished in many ways.
As explained in Longin [2000], statistical models can be
classified according to the part of the distribution that is
modeled. The classic approach consists of modeling the
whole distribution of all returns, while the extreme-value
approach focuses on the distribution of extreme returns.
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their time-varying properties. Unconditional distribu-
tions produce the same VaR and BVaR numbers, what-
ever the market conditions at the reporting date, while the
VaR and BVaR given by conditional processes depend on
the current market conditions (especially on the level of
market volatility).

Several statistical models are used in the empirical
study. They include three unconditional distributions:
the historical distribution of returns, the asymptotic dis-
tribution of extreme returns, and the Gaussian distribu-
tion of returns; and two conditional Gaussian processes:
the exponential weighted moving average (EWMA) for
the variance process used in RiskMetrics™ [1995], and
the generalized autoregressive conditional heteroscedas-
tic (GARCH) process for the variance introduced by
Engle [1982] and Bollerslev [1986]. Note that results
obtained from conditional processes depend on the mar-
ket conditions on the estimation date (such as the history
of returns observed in the recent past). A detailed pre-
sentation of each statistical model along with the results
of their estimation appears in the appendix.

The statistical models are used to compute both
VaR and BVaR. In order to make meaningful compar-
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EXHIBIT 5

VaR and BVaR for Linear Positions in S&P 500 Index Computed with Ten-Day Returns

Panel A. Long Position

p=09 p=0.99 p=0.999
VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR
VaR VaR VaR
Historical 3.02 5.04 66.89 7.00 10.15 45.00 n:c. e, n.c.
Extreme-Value 2.39 5.19 11715 733 10.21 39.29 13.86 17.62 2713
Unconditional Gaussian  3.34 4.76 42 .51 6.48 7.49 15.59 8.77 9.60 9.46
EWMA 412 5.83 41.50 7.89 9.12 15.59 10.65 11.65 9.39
GARCH 4.10 5.80 41.46 7.86 9.08 15.52 10.60 11.60 9.43
Panel B. Short Position
p=09 p=0.99 p=0.999
VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR
VaR VaR VaR
Historical 3.82 5.53 44.76 7.96 9.55 19.97 n.c. 1.l n.c.
Extreme-Value 3.43 5.60 63.27 7.25 9.63 32.83 12.64 1595 26.19
Unconditional Gaussian  4.35 5.77 32.64 7.48 8.50 13.64 9.77 10.60 8.50
EWMA 5.12 6.83 33.40 8.89 10.11 13.72 11.65 12.65 8.58
GARCH 5.12 6.83 33.40 8.88 10.10 13.74 11.63 12.62 8.51

N.c. Not calculable; too few observations.

isons between the different statistical models in terms of
BVaR, differences between the VaR obtained from the dif-
ferent models have to be taken into account. To standardize
the results, the ratio (BVaR — VaR)/VaR is computed. A
low value (close to zero) for this ratio means that the losses
beyond the VaR are concentrated near the VaR. A high
value for this ratio means that the losses beyond the VaR
are widely spread beyond the VaR.

Empirical Results for Linear Positions

Empirical results for linear positions in the U.S. equity
market are given for two frequencies (one-day returns in
Exhibit 4 and ten-day returns in Exhibit 5) and for both
types of market position (a long position in Panel A and a
short position in Panel B). As shown in Longin [2000], the
VaR estimates vary widely from one model to another. The
differences among models also tend to widen with the
probability level, i.e., when we look farther into the tails.

Let us consider, for example, the results obtained for
a long position in the S&P 500 index using one-day
returns (Panel A of Exhibit 4). For a probability level of
99%, the VaR estimate for a position with an initial value
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of $100 is equal to $2.16 based on the historical distri-
bution and to $1.92 based on the unconditional Gaussian
distribution. For a probability level of 99.9%, these two
estimates are, respectively, equal to $3.91 and $2.57 (a
much greater difference).

Such a difference is well explained by the way the
tail of a distribution is modeled. The distribution actu-
ally observed in financial markets presents fat tails, while
the Gaussian distribution has thin tails (as reported in the
appendix, the tail index estimate for the S&P 500 index
is negative, implying a fat-tailed distribution for returns).

Turning to BVaR, there are also differences among
the models, and these differences are even much greater
than for the VaR. For a probability level of 99%, the
BVaR estimate for a position with an initial value of $100
is equal to $3.08 based on the historical distribution and
to $2.21 based on the unconditional Gaussian distribu-
tion (Panel A of Exhibit 4). For a probability level of
99.9%, the two estimates are, respectively, equal to $6.97
and $2.81 (a much greater difference).

Based on the historical distribution, the difference
BVaR — VaR increases in absolute terms from $0.92
(3.08 — 2.16) at the 99% level to $3.06 (6.97 — 3.91) at
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EXHIBIT 6

VaR and BVaR for Non-Linear Positions in S&P 500 Index with Put and Call Options

Panel A. Leveraged Position

p=0.9 p=0.99 p =0.999
VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR
VaR VaR VaR
Historical 3.02 5.78 91.39 890 15.20 70.79 n.c. n.c. n.c.
Extreme-Value 2.39 5.18 116.74 9.55 15.31 60.31 22.61 30.83 36.36
Unconditional Gaussian  3.34 5.12 53.29 7.85 9.88 25.86 12.43 14.09 13.35
EWMA 4.40 741 68.41 11.67 14.26 22.19 17.50 19.62 12.11
GARCH 451 7.71 70.95 12.11 14.77 2197 18.10 20.27 11.99
Panel B. Highly Leveraged Position
p=09 p=0.99 p=0.999
VaR BVaR BVaR-VaR VaR BVaR BVaR- VaR VaR BVaR BVaR- VaR
VaR VaR VaR
Historical 3.02 8.75 189.74 16.50 35.40 114.55 n.c. niE; n.c.
Extreme-Value 2.39 6.02 151.88 18.44 35.73 93.76 57.62 80.17 39.14
Unconditional Gaussian  3.34 6.56 96.41 13.33 1943 45.76 27.07 32.06 18.43
EWMA 440 12.23 177.95 2479 32.56 31.34 4229 48.64 15.02
GARCH 451 13.05 189.36 26.12 34.10 30.55 44,09 50.61 14.79

N.c. Not calculable; too few observations.

the 99.9% level. Based on the unconditional Gaussian dis-
tribution, the difference BVaR — VaR_ decreases in abso-
lute terms from $0.29 (2.21 — 1.92) at the 99% level to
$0.24 (2.81 — 2.57) at the 99.9% level.

As the probability level increases, the BVaR computed
with the historical distribution tends to diverge from the
VaR,, while the BVaR computed with the Gaussian dis-
tribution tends to converge toward the VaR as predicted
by the theory.

Such an empirical property can also be appreciated
in relative terms by considering the ratio (BVaR —
VaR)/VaR. For a probability level of 99%, the value of
this ratio is equal to 42.59% for the historical distribution
and to 15.10% for the unconditional Gaussian distribu-
tion. Similarly, for a probability level of 99.9%, the val-
ues for this ratio are, respectively, 78.26% and 9.34%.

Considering all results presented in Exhibits 4 and
5, two groups of models emerge: on the one hand, the
historical distribution and the extreme value distribution
with high ratio values, and on the other hand, all the mod-
els based on normality with low ratio values. BVaR esti-
mates based on the historical distribution and the
extreme-value distribution are always relatively much
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higher than those based on statistical models assuming con-
ditional or unconditional normality. In the case of the his-
torical and extreme-value distributions, the ratio (BVaR —
VaR)/VaR sometimes increases and sometimes decreases,
while in the case of the Gaussian distribution the ratio
always decreases rapidly toward zero.

In other words, a method assuming normality would
underestimate not only the VaR but also the risk beyond
the VaR.

Empirical Results for Non-Linear Positions

Empirical results for non-linear positions in the
U.S. equity markets are given in Exhibit 6. Each posi-
tion corresponds to a long position in the S&P 500
index, the selling of out-of-the-money put options on
the S&P 500 index, and the buying of out-of-the-
money index call options. These options are traded on
the Chicago Mercantile Exchange (see the CME web-
site for a description of the contracts). The number of
index call options bought is calculated so that the buy-
ing price of the call options is equal to the selling price
of the put options.
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Two positions are considered: a leveraged position with
one put option (Panel A) and a highly leveraged position
with five put options (Panel B). The maturity of the options,
which is equal to ten days, is chosen to correspond to the
period used to compute both the VaR and the BVaR of the
position. The building date of the position is December 6,
1999 (ten trading days before the maturity of the options).
Both VaR and BVaR are estimated at that date.

The results are obtained using data as follows:

S&P 500 index value on Dec. 6, 1999: 1,422.64
Initial value of long position in the index: 1,422.64
Strike price of index put option; 1,350.00

Market price of index put option on Dec. 6, 1999: $2.00
Number of index put options:

1 (leveraged position) or

5 (highly leveraged position)
Strike price of index call option: 1,500.00
Market price of index call option on Dec. 6, 1999: $1.00
Number of index call options:

2 (leveraged position) or

10 (highly leveraged position)
Maturity date of index put and call options:
Time to expiration: 10 trading days

Dec. 23, 1999

The index put options are out of the money. Their
strike price (1,350.00) is 5.11% below the current index
value (1,422.64). The probability for these options to
finish out of the money at maturity is equal to 95.63%
under the historical distribution, 96.93% under the uncon-
ditional Gaussian distribution, and around 94% under
the conditional Gaussian processes, taking into account the
current market conditions at December 6, 1999.

Let us first consider the results obtained for a lever-
aged position (Panel A of Exhibit 6). For a probability level
of 90%, the VaR estimate for a position with an initial
value of $100 is equal to $3.02 based on the historical dis-
tribution. This number is identical to the number obtained
for a linear position (see Panel A of Exhibit 5) because the
chosen probability level of 90% used to compute the
VaR is too low to take into account the losses from in-
the-money put options at maturity as indicated above. In
other words, the VaR is unable to capture the risk asso-
ciated with the put options. The BVaR measure deals with
this problem: The BVaR of the leveraged position is equal
to $5.78, and higher than the $5.04 obtained for the
BVaR of the linear position.

This result is even more striking for a highly lever-
aged position (Panel B of Exhibit 6). For a probability level
of 90%, the VaR estimate based on the historical distri-
bution is still equal to $3.02, while the BVaR is now equal
to $8.75. The value of the ratio (BVaR — VaR)/VaR
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computed for the historical distribution is equal to 91.39%
for a leveraged position and to 189.74% for a highly
leveraged position. Similar results are obtained with the
other statistical models.

ITII. CONCLUSION

The risk measure BVaR allows us to summarize in
a single number the profile of the losses beyond the VaR.
Technically speaking, it corresponds to the statistical mean
of the losses exceeding the VaR. The empirical results
obtained here remind us that computation of both the VaR.
and the BVaR is very sensitive to the statistical model used
to describe the behavior of asset returns. In particular, the
assumption of normality leads to an underestimate of the
true risk associated with extreme events.

As is true of any model, VaR does not provide a per-
fect description of reality. Financial institutions should be
aware of its limitations. A practical way to deal with the
risk beyond the VaR is to impose operational limits (such
as in terms of number of contracts, nominal amount,
sensitivities, or stop loss orders) in addition to VaR lim-
its. BVaR, along with VaR, may also eventually become
an effective risk management tool.

While the goal of VaR as a risk management tool
1s to control market risk during normal market conditions
(say, 99% of the time), the objective of BVaR would be
to control market risk during extraordinary market con-
ditions (1% of the time). Such a control may be particu-
larly important for positions invested in financial assets
characterized by fat-tailed distributions or for positions
including options.

Finally, the concept of BVaR may be of some inter-
est for financial regulators as well. Since establishment of
changes in regulations on market risk in 1996, financial
institutions have been allowed to compute the regulatory
capital for their market risks using their own internal
models. As I argue in Longin [2000], basing the compu-
tation on classic VaR models does not take extraordinary
market conditions explicitly into account.

A first approach to this problem would be to con-
sider a VaR computed with a more conservative proba-
bility level such as 99.9% (instead of 99%) to better reflect
the frequency of extreme events affecting market positions.
Ideally computed using extreme value theory, this VaR
would be similar to a stress value.

A second approach could be to relate the level of
economic or regulatory capital to the BVaR, as this mea-
sure takes into account the whole distribution of extreme
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events in a more integrated manner. While the first
approach considers only the frequency of extreme events,
the second approach integrates both the frequency and the
size of extreme events.

APPENDIX
Statistical Models

The Historical Distribution

The historical distribution is built over the entire period
January 1962-December 1999. The period includes 9,494
observations of one-day returns and 949 observations of ten-
day returns. For a probability level p, the VaR of a position cor-
responds to the (1 — p)% quantile of the historical distribution.
It is given by

VaR (R, p)= ~Inf(R, /T21-p] (A

where F* represents the historical distribution and (R} _, 1 the
series of observed returns arranged in ascending order.

The BVaR of a position corresponds to the average of
observed returns exceeding the VaR (lower than —VaR). It is

given by

The Extreme-Value Distribution

The extreme-value distribution allows one to model the
behavior of extremes of a random process. Extremes are defined
as the highest observation (the maximum) and the lowest (the
minimum) over a given period of time. The extreme-value the-
orem gives the form of the asymptotic distribution of stan-
dardized extremes. Three possible types of extreme-value
distribution can be distinguished: Gumbel, Fréchet, and
Weibull.

The minimum observed over n trading intervals, denoted
by Z ,is defined by Z = Min(R|,R,, ..., R ). Following Gne-
denko [1943] and Gumbel [1958], the asymptotic distribution
of the standardized minimum (Z_ — Bn)/ o, denoted by F, is
given by

F,(z) = 1—exp| —(1+12)° (A-3)

forz <-1/1ift <0 and for z > =1/7 if T > 0. The parame-
ters & and B correspond to scale and location parameters. The
parameter T, called the tail index, determines the type of dis-
tribution: T < 0 corresponds to a Fréchet distribution, T > 0 to
a Weibull distribution, and the intermediate case (T = 0) cor-
responds to a Gumbel distribution. The Gumbel distribution
can be regarded as a transitional limiting form between the
Fréchet and the Weibull distributions as (1 — 7z)!/* is interpreted

3, R, as e For small values of T, the Fréchet and Weibull distribu-
BVaR (F}*{is’ p) = _ w_ (A-2) tions are very close to the Gumbel distribution. The tail of the
T(1 - p) distribution of returns is either declining exponentially (Gum-
EXHIBIT
Estimation of Parameters
Frequency of Type of Scale Location Tail
Returns Extreme Parameter o, Parameter 3, Index t
Minimum 0.637 -1.690 -0.428
One-Day Return (0.078) (0.085) (0.117)
Maximum 0.776 1.857 -0.128
Return (0.076) (0.100) (0.084)
Minimum 1.858 -2.816 -0.128
Ten-Day Return (0.178) (0.237) (0.072)
Maximum 1.398 3.749 -0.156
Return (0.144) (0.185) (0.099)
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bel) or by a power (Fréchet), or remains finite (Weibull).

For the empirical study, the extreme-value distribution
is estimated from extreme returns, which are selected over
non-overlapping six-month periods. Estimation of the three
parameters (0, B, and 1) is presented in the Exhibit.

A goodness-of-fit test is carried out to check the adequacy
of the estimated extreme-value distribution to the observed dis-
tribution of extreme returns (see Longin [1996] for a descrip-
tion of the test).

As in Longin [2000], for a probability level p, the VaR
is computed by the equation

VaR (Fz,, ; p) =-F;, [(1 & P)n] (A-4)

where F, represents the asymptotic distribution of extreme
returns selected over a period including n returns.
The BVaR is given by

—-VaR
x f, (x)dx
BVaR(F,, ,p) = - —= 2y
n FZn(—VaR)

(A-5)

The Unconditional Gaussian Distribution

The unconditional Gaussian distribution is characterized
by two parameters only: the mean and the variance. Over the
period January 1962-December 1999, the empirical mean
and variance of one-day returns are, respectively, equal to
0.050 and 0.721. For ten-day returns, the statistics are equal
to 0.502 and 8.994. These numbers are used in Exhibits 3—6
to obtain the VaR and the BVaR of a position. The compu-
tation of these quantities is based on Equations (1) and (2), with
F,, representing in this case a Gaussian distribution with con-
stant mean and variance.

Conditional Gaussian Processes

Two conditional Gaussian processes are used: the expo-
nential weighted moving average (EWMA) process and the gen-
eralized autoregressive conditional heteroscedastic (GARCH)
process. Both processes describe the time-varying behavior of
the variance of returns. More precisely, it is the expected vari-
ance of returns R observed at time t, computed one period
before at time t — 1 and denoted by Gzt, that is modeled.

The EWMA equation for the expected variance is given
by
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o =(1-Ael, +Aor, (A-6)

where the parameter A, called the decay factor, reflects the per-
sistence in volatility of both the latest innovation in returns € _,
and the past variance 0;_,. The initial variance 0;, is computed
from the first observations of returns. An optimal value for the
parameter A is computed so that the variance process best
describes the observed variance (measured by the squared inno-
vations in returns). For the time series of the S&P 500 index,
the decay parameter estimate is equal to 0.92 for one-day
returns and to 0.89 for ten-day returns. These values are close
to the ones applied to all time series by RiskMetrics: 0.94 for
one-day returns and 0.97 for monthly returns.

The GARCH(1, 1) equation for the expected variance
is given by

OF = 0 +OuEL; + 0,07 (A-7)

where parameter o, reflects the persistence in volatility of the
latest innovation in returns € _,, parameter 0., reflects the per-
sistence in volatility and of the past variance 0;_,, and param-
eter o, is related to the unconditional level of volatility G by
0, = 6/(1 — 0, — a,). Using one-day returns, the estimates of
the three parameters o, 0., and a, are, respectively, equal to
4.45107 (6.10 10, 0.077 (0.002), and 0.918 (0.003) with stan-
dard errors in parentheses. Using ten-day returns, the estimates
of the three parameters a,, a,, and a, are 0.422 (0.165), 0.154
(0.025), and 0.811 (0.038).

For both conditional Gaussian processes, the VaR and
BVaR of a position are computed (respectively) with Equations
(1) and (2), with F, representing in this case a Gaussian distri-
bution with time-varying mean and variance. The variance is
estimated by Equations (A-6) or (A-7). Using the estimated
parameters of the volatility processes given above, the condi-
tional variance of one-day returns at December 31, 1999, is
equal to 0.469 for the GARCH process and to 0.445 for the
EWMA process. For ten-day returns, the two statistics are
equal to 12.941 and 13.001.

These numbers are used in Exhibits 4-6 to compute
the VaR and BVaR of a position at a particular date, Decem-
ber 31, 1999. Although the parameters are estimated over the
whole period (January 1962-December 1999), the condi-
tional volatility estimates mainly reflect the market condi-
tions a few months before the estimation date (around ten
weeks for the EWMA process using one-day returns).
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ENDNOTES

The author thanks for their comments Paul Ellis, Nico-
las Gaussel, Jérome Legras, Pradeep Yadav, and an anonymous
referee; and participants at the French Finance Association
Meetings (Paris, June 2000) and the SIRIF Conference on
“The State of the Art of Value at Risk” (Edinburgh, Septem-
ber 2000). The opinions expressed here are those of the author
and do not necessarily reflect the official views of his employer.
This article is a revised version of CERESSEC Working Paper
97-011.

'A general exposition is in Jorion [1997] and Dowd
[1998]. Recent advances are given in Gaussel et al. [2000].

*Note that in well risk-managed financial institutions,
operational limits (such as number of contracts, nominal amount,
sensitivities, stop loss) in addition to VaR limits would constrain
such behavior.

*References on the subject include Embrechts, Kiippel-
berg, and Mikosch [1997]; Figlewski [1998], Artzner et al.
[1999], Basak and Shapiro [1999], and Frey and McNeil [2000].
Note that in insurance a similar measure usually called the
“mean excess function” has long been used to model the
expected claim size of insurance contracts.

*See Mandelbrot [1963] for a presentation of stable Pare-
tian distributions.

’If call and put options with longer maturity were con-
sidered, other effects such as changes in the level of interest rates
and implied volatility or the passage of time would modify the
analysis.

Note the similarity between Exhibits 1 and 3. A posi-
tion invested in assets characterized by a fat-tailed distribution
and a position including options both lead to distributions of
the losses beyond the VaR different from that obtained for the
basic case (a linear position assuming the thin-tailed Gaussian
distribution). Yet the distribution of the losses beyond the
VaR is fat-tailed in the first case while still thin-tailed (but more
dispersed) in the second case.

’See “An Internal Model-Based Approach to Market
Risk Capital Requirements” [1995], “Amendment to the Cap-
ital Accord” [1996], and “Credit Institutions” [1996)].
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