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Abstract 

Is Bitcoin the new digital Gold? To answer this question, we investigate the potential 

benefits of Bitcoin during extremely volatile periods. To this end, we use multivariate 

extreme value theory, which is the appropriate statistical approach to model the tail 

dependence structure. We focus on the extreme correlation. Considering first a position 

in equity markets, we find -similarly to previous studies- that the correlation of extreme 

returns increases during stock market crashes and decreases during stock market booms. 

Then, by combining each equity market with Bitcoin, we find that the correlation of 

extreme returns sharply decreases during both market booms and crashes, indicating that 

Bitcoin could play an important role in asset management. A similar result is obtained 

for Gold confirming its well-recognized status of a safe haven when a crisis happens. 

Furthermore, we find a low extreme correlation between Bitcoin and Gold, which 

implies that both assets can be used together in times of turbulence in financial markets. 

Such evidence indicates that Bitcoin can be considered as the new digital Gold. 

However, Gold can still play an important role in portfolio risk management. 
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1. Introduction 

Extreme adverse events in financial markets always represent a painful experience 

for investors. Thus, portfolio diversification during extremely volatile periods is of utmost 

importance for asset managers, financial advisors, and investors to control the risk level 

of their portfolio. A shift to secure assets during such periods is a strategy which is very 

frequently used to reduce portfolio riskiness. Over time, Gold has played the role of a safe 

haven;2 the yellow metal has been considered as a suitable investment choice for portfolio 

diversification and portfolio hedging against adverse price movements (see Jaffe, 1989; 

Hillier et al., 2006; Baur and Lucey, 2010; Baur and McDermott, 2010; among others). 

Investors used to include Gold in their portfolios as it is characterized by high liquidity. 

It is also considered to be universal since it is globally accepted in transactions and 

provides thoughtful diversification benefits to traditional asset classes. Moreover, the 

purchasing power and the value of Gold have remained stable under the threat of erosion 

of the monetary or banking systems. Gold as a safe haven has over 5,000 years of history. 

Over the past few years, Bitcoin has made a shattering entrance in the financial 

world. Bitcoin is an online communication protocol which uses a virtual currency, with 

the addition of electronic payments. Ten years after the seminal paper by Nakamoto 

(2008) introducing Bitcoin, the cryptocurrency has been a success in terms of popularity 

among both individual and institutional investors. Böhme et al. (2015) report in detail 

how Bitcoin works in their study, mentioning several potential innovative applications in 

several areas. Essentially Bitcoin has come out as something “new”. Although it is now 

not the only cryptocurrency, Bitcoin is by far the largest in terms of market capitalization. 

Furthermore, the usefulness of Bitcoin has sparked interest for both academics and 

practitioners in the areas of statistics, risk management and asset management.  

In this paper, we investigate the potential diversification benefits of Bitcoin during 

extremely volatile periods. To this end, we use extreme value theory, which is the 

appropriate approach to study this issue. In a multivariate framework, we focus on the 

extreme correlation, which summarizes the tail dependence structure of the return 

distribution. We develop a research strategy in four steps. First, we consider as a starting 

point a position in equity markets (Europe and the United States) and find that the extreme 

                                                 

 

2 See Ranaldo and Soderlind (2010) for more information about safe haven assets.  
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correlation increases during stock market crashes and decreases during stock market 

booms. Such a stylized fact has been found in previous empirical studies (see Longin and 

Solnik, 2001; Ang and Chen; 2002, Hartmann et al., 2004; among others). Second, we 

combine each equity market with Bitcoin, and find that the correlation of extreme returns 

sharply decreases during both market booms and crashes, indicating that Bitcoin can play 

an important role in portfolio management during extremely volatile periods. Third, we 

combine each equity market with Gold, and find a similar result confirming the well-

recognized status of Gold as a safe haven. Finally, we study the joint behavior of Bitcoin 

and Gold, and find a low extreme correlation, indicating that both assets can be useful 

together in times of turbulence in financial markets. Such evidence indicates that Bitcoin 

can be considered as the new digital Gold. However, Gold can still play an important role 

in portfolio risk management. 

This paper is organized as follows: Section 2 details the research strategy followed 

in this study. Section 3 deals with the modeling of extremes. Section 4 details the 

estimation process, presents the testable hypotheses and reports the empirical results. 

Section 5 discusses the general economic backdrop of Bitcoin and Gold, compares the 

findings and assesses the joint potential of Bitcoin and Gold as diversifiers. Section 6 

concludes by emphasizing the practical importance of our results in asset management. 

2. Research strategy 

This section presents our research strategy to investigate the potential 

diversification benefits of Bitcoin in asset management during extremely volatile periods. 

Our objective is to answer the following question: is Bitcoin the new digital Gold? To 

this end, we focus on extremely volatile periods, since such market conditions matter the 

most for investors. We use multivariate extreme value theory, which is the appropriate 

statistical approach to model the tail dependence structure. We focus on the extreme 

correlation. Our research strategy unfolds in four steps described below. 

Step 1: Equity markets 

We consider a position in equity markets (Europe and the United States). We 

focus on the correlation in equity markets during extremely volatile periods in order to 

assess diversification benefits in an equity position. Several empirical studies have found 

that the correlation of extreme returns increases during stock market crashes and 

decreases during stock market booms. Indeed, correlation is not related to market 
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volatility per se, but to the market trend. This implies that the probability of large losses 

in two markets is significantly higher than the probability of large profits since downside 

market conditions constitute the driving force in equity correlation. The objective of this 

first step is to confirm this stylized fact about equity markets during extremely volatile 

periods. 

Step 2: Equity markets and Bitcoin 

We then combine each equity market with Bitcoin. The objective of this second 

step is to assess the potential diversification benefits of Bitcoin during extremely volatile 

periods. The usefulness of Bitcoin for investors would be characterized by a decreasing 

extreme correlation during market crashes implying diversification benefits. On the 

opposite, an increasing extreme correlation during market crashes would imply limited 

diversification benefits by including Bitcoin in an equity portfolio. 

Step 3: Equity markets and Gold 

We then combine each equity market with Gold. Several empirical studies have 

found a low correlation between equity markets and Gold during a financial crisis. The 

objective of this third step is to confirm the well-known status of Gold as a safe haven 

during stock market crashes. By looking at the extreme correlation between equity 

markets and Gold, we expect to find a decreasing extreme correlation confirming its well-

recognized status of a safe haven when a crisis happens. 

Step 4: Bitcoin and Gold 

Finally, we consider a position in Bitcoin and Gold. The objective of this fourth 

step is to see if both assets can provide together diversification benefits during extremely 

volatile periods. The usefulness of both Bitcoin and Gold in an equity position would be 

characterized by a decreasing extreme correlation during market crashes implying extra 

diversification benefits. On the opposite, an increasing extreme correlation during market 

crashes would imply limited diversification benefits as Bitcoin and Gold are substitutable 

assets. 

3. Modelling approach 

This section describes the modelling approach for the behavior of extreme returns 

in financial markets. We model the bivariate tail dependence structure of the distribution 

of asset returns. We define extreme returns as return exceedances, that is, returns lower 

than a threshold for the left tail (negative return exceedances) and returns higher than a 
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threshold for the right tail (positive return exceedances). First, we deal with the univariate 

modelling of extremes by fitting a general Pareto distribution (GPD) for each marginal 

distribution of return exceedances. To this end, we use the peaks-over-threshold method 

to select extreme returns for each distribution tail. Second, we deal with the bivariate 

modelling of extremes by fitting the Gumbel–Hougaard copula and focusing on the 

extreme correlation defined as the correlation of return exceedances. 

3.1 Univariate modelling of extremes 

Consider a sequence of independent and identically distributed random variables 

{𝑋1, 𝑋2, … , 𝑋𝑛} with a continuous cumulative distribution function 𝐹𝑋. For positive 

extremes, over a threshold 𝑢 > 0, the distribution of exceedances (𝑋 − 𝑢) denoted by 𝐹𝑋
𝑢 

is given by: 

𝐹𝑋
𝑢(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥|𝑋 > 𝑢)  =

𝐹𝑋(𝑢 + 𝑥) − 𝐹𝑋(𝑢)

1 − 𝐹𝑋(𝑢)
, 0 ≤ 𝑥 ≤ 𝑥𝐹𝑋

− 𝑢 (1) 

where 𝑥 = 𝑋 − 𝑢 is the exceedances and 𝑥𝐹𝑋
≤ ∞ the right endpoint of 𝐹𝑋. The peaks-

over-threshold method is an efficient method for modelling the extremes over a specific 

threshold under an unknown distribution (see Leadbetter, 1991). 

For a large class of underlying distributions, Balkema and De Haan (1974) and 

Pickands (1975) showed that the excess distribution 𝐹𝑋
𝑢 can be approximated for large 𝑢 

by a GPD, 𝐺𝜉,𝜎, defined by: 

𝐺𝜉,𝜎(𝑥) = 1 − 𝑝 {1 +
𝜉𝑥

𝜎
}

−1 𝜉⁄

, 𝑥 > 𝑢 (2) 

where x represents the exceedances, 𝑝 the tail probability of exceedances over threshold 

𝑢, 𝜎 > 0 the scale parameter and 𝜉 ∈ ℝ the tail index. When 𝜉 > 0, 𝐺𝜉,𝜎 corresponds to 

a heavy-tailed distribution (Fréchet type distribution). When 𝜉 → 0, 𝐺𝜉,𝜎(𝑥) → 1 −

𝑒𝑥𝑝 (−
𝑥

𝜎
) which is an exponentially declining tail distribution and corresponds to a thin-

tailed distribution (Gumbel type distribution). When 𝜉 < 0, 𝐺𝜉,𝜎 corresponds to a 

distribution with no tail or a finite distribution (Weibull type distribution). 

For return distributions used in financial modelling, we can easily compute the 

parameters of the limit distribution. For example, the normal distribution leads to a GPD 

with 𝜉 = 0. The Student-t distributions and stable Paretian laws lead to a GPD with 𝜉 >

0. Furthermore, the GPD can be extended to processes based on the normal distribution: 

autocorrelated normal processes, discrete mixtures of normal distributions and mixed 
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diffusion jump processes. They all have thin tails and their domain of attraction is a GPD 

with 𝜉 = 0. De Haan et al. (1989) showed that if returns follow a GARCH process, then 

the extreme return has a GDP with 𝜉 > 0. 

3.2 Bivariate modelling of extremes 

Consider a bidimensional vector of random variables denoted as 𝑋 =  (𝑋1 , 𝑋2) 

with a bivariate distribution function 𝐹. Bivariate return exceedances correspond to the 

vector of univariate return exceedances defined with a bidimensional vector of thresholds 

𝑢 = (𝑢1, 𝑢2). The bivariate distribution can only converge toward a distribution 

characterized by a GPD for each margin and a dependence function. In this paper, we use 

copulas to model the dependence structure of vector 𝑋. Copulas are multivariate 

distributions with uniform [0,1] marginal distributions corresponding to transformed 

initial margins of distribution F (Sklar, 1959). 

In a general form, a copula function under a common bivariate probability 

distribution 𝐹 of vector 𝑌 of the transformed random variables 𝑌𝑖 = 𝐹𝑋𝑖 
(𝑋𝑖), for 𝑖 = 1,2 

is defined as: 

𝐶(𝑢) = 𝑃𝑟{𝑌1 ≤ 𝑢1, 𝑌2 ≤ 𝑢2} = 𝐹(𝐹𝑋1 

−1(𝑢1 ), 𝐹𝑋2 

−1(𝑢2 )) (3) 

The initial function 𝐹 can arise from a copula function as 𝐹(𝑥)  =  𝐶(𝐹𝑋1 
(𝑥1), 𝐹𝑋2

(𝑥2)), 

which is an efficient transformation of 𝐹 into 𝐶, and into univariate marginal distribution 

functions 𝐹𝑋𝑖 
 (see Reiss and Thomas, 2001). 

When dealing with extremes with heavy-tailed distributions and tail dependence, 

the appropriate statistical transformation for 𝑋 is a standard Fréchet copula (Fréchet 

margins) in order to remove the influence of marginal aspects such that differences in 

distributions are due to dependence aspects (see Embrechts et al., 1999). Fréchet margins 

display dependency -either negative or positive- defined as Fréchet lower and upper 

bound copulas, which correspond to the limit cases of extreme dependency (see Yang et 

al., 2009). The Fréchet margins are given by 𝑦1 = −1 log𝐹𝑋1 
(𝑋1 )⁄  and 

𝑦2 = −1 log𝐹𝑋2
(𝑋2)⁄  for 𝑋1  and 𝑋2, respectively, where 𝐹𝑋1 

and 𝐹𝑋2
 are the 

corresponding marginal distribution functions. Furthermore, 𝑃𝑟(𝑦1 > 𝑢) = 𝑃𝑟(𝑦2 >

𝑢) ~ 𝑢−1 as 𝑢 → ∞. This corresponds to equally extreme events for each variable. The 

vector (𝑌1, 𝑌2) is also described by the same dependence structure as in (𝑋1 , 𝑋2).  
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In this paper, we transform our data into unit Fréchet margins defined by the 

threshold 𝑢. Then, following Longin and Solnik (2001) and Poon et al. (2004), we 

consider two parametric dependence models as representatives of asymptotically 

independent and asymptotically dependent models. 

As for the class of asymptotically independent models, the dependence function, 

denoted by 𝐷𝐺 , is characterized by: 

𝐷𝐺(𝑦1, 𝑦2) = (
1

𝑦1
+

1

𝑦2
) (4) 

where 𝑦𝑖 = −1/log𝐺𝜉,𝜎(𝑥𝑖), for 𝑖 = 1,2. The asymptotic independence of return 

exceedances is reached in many cases. When the components of the return distribution 

are independent, exact independence of extreme returns is obtained. However, asymptotic 

independence can arise even if the components of the return distribution are not 

independent. As proposed by Bortot et al. (2000), we employ the Gaussian model for 

Fréchet margins to model the asymptotically independent components, as follows: 

𝐷𝐺(𝑦1, 𝑦2) = Φ2 (Φ−1 {exp (−
1

𝑦1
)} , Φ−1 {exp (−

1

y2
)} ; 𝜌) , 𝜌 < 1 (5) 

where Φ2 is a bivariate normal distribution with 𝜇 = (0,0) and Σ = (
1 𝜌
𝜌 1

). 

As for the class of asymptotically dependent models, the dependence function 𝐷𝐺  

satisfies the following condition: 

𝐺(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−𝐷𝐺 (−
1

𝑦1
, −

1

y2
)) , 𝑦1, y2 > 0 (6) 

We employ the logistic model proposed by the form of the dependence function of 

Gumbel-Hougaard copula (see Gumbel, 1960; 1961 and Hougaard, 1986) for Fréchet 

margins to model the asymptotically dependent components, as follows: 

𝐺𝛼(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−(𝑦1
−1/𝛼

+ 𝑦2
−1/𝛼

)
𝛼

)  (7) 

This model contains the special cases of asymptotic independence and total dependence. 

It is parsimonious as we only need one parameter to model the bivariate dependence 

structure of return exceedances: the dependence parameter 𝛼 (0 < 𝛼 ≤ 1). The 

correlation coefficient of return exceedances 𝜌 can be computed from the dependence 

parameter 𝛼 of the logistic model by: 𝜌 =  1 − 𝛼2. The special cases where 𝛼 is equal to 

1 and 𝛼 is equal to 0 correspond to asymptotic independence, in which 𝜌 is equal to 0, 

and total dependence, in which 𝜌 is equal to 1, respectively (Tiago de Oliveira, 1973). 
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Although extreme value theory is based on large samples, in real applications, the 

limited number of return exceedances can lead to sample biases, especially as we move 

towards the distribution tails. In order to avoid such problems, we estimate a parametric 

bootstrap bias-corrected correlation coefficient for exceedances to reduce the estimation 

bias proposed by Gkillas and Longin (2018). To this end, we simulate from a bivariate 

extreme value distribution of a logistic type model following Stephenson (2003). By 

applying this procedure, we are able to avoid significant misleading results when the 

number of observations is limited.3 

4. Empirical results 

This section presents our empirical results. First, we discuss the data and data 

adjustments in order to work with stationary time-series. Second, we present the 

parameter estimates of the bivariate model for the tail dependence structure. Third, we 

provide some statistical tests related to normality and dependence based on the extreme 

correlation. Fourth, we discuss the main findings of our study. 

4.1 Data and data adjustments 

We analyze the tail dependence structure of international equity markets, Europe 

and the United States, vis-à-vis Bitcoin and Gold in a pairwise comparison. For the equity 

market in Europe (EU), we use the STOXX Europe 600 index, and for the equity market 

in the United States (US), we use the S&P 500 index. Both indices include the most 

heavily traded and liquid stocks with the largest market capitalization of their 

geographical zone. 

Our empirical study covers the time-period from April 19, 2013 to April 17, 2018. 

Although Bitcoin started to be traded in 2010, we opt for the starting date of April 19, 

                                                 

 

3 The maximum likelihood procedure for fairly large samples allows the estimation of actual 

number of standard errors and confidence intervals (Coles et al., 2003). In such cases, the maximum 

likelihood procedure provides the most accurate estimates (Hosking and Wallis, 1987). Nevertheless, this 

approach is not applicable in some cases including the existence of biased error (Koch, 1991). On the one 

hand, if the sample size is quite large, the maximum likelihood estimator is a good choice (van Gelder et 

al., 1999). On the other hand, in the case of small samples, there are significant computational problems 

leading to unreliable estimates and sample bias (see Chaouche and Bacro, 2006; among others). Since that 

there are more adequate estimators, in this paper, we apply a parametric bias-corrected approach based on 

the maximum likelihood procedure to avoid such problems. Our approach reduces the sample bias observed 

is small sample taking into consideration the benefits coming from the standard maximum likelihood 

procedure. 
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2013 in order to avoid unreliable and spurious results due to the very low liquidity and 

resulting variability of Bitcoin during that period. From April 19, 2013, when Bitcoin 

prices broke for the first time the $100 threshold, the impact of liquidity on market prices 

became less important. In our study, we consider weekly returns so as to avoid the time 

lag bias between the equity markets in Europe and the United States. Data for Bitcoin, 

the STOXX Europe 600, the S&P 500 and Gold come from Bloomberg. 

For each time-series of returns, we apply a data adjustment procedure based on 

the work of Gallant et al. (1992) to remove trends, and the work of MacNeil and Frey 

(2000) to take into account heteroskedasticity due to clusters. Thus, we limit the sample 

bias observed for serially-correlated and clustered data. We describe in detail our data 

adjustment procedure in Appendix 1. 

4.2 Estimation of the parameters of the bivariate model 

We discuss now the estimation of the parameters of the bivariate model for the 

tail dependence structure. Following our four-step research strategy, we present our 

empirical results in four sets of tables. 

Table 1 refers to the bivariate tail dependence structure between the equity 

markets in Europe and the United States (EU/US). Table 2 refers to the bivariate tail 

dependence structure between each equity market and Bitcoin: Table 2A for Europe and 

Bitcoin (EU/BTC), and Table 2B for the United States and Bitcoin (US/BTC). Table 3 

refers to the bivariate tail dependence structure between each equity market and Gold: 

Table 3A for Europe and Gold (EU/Gold), and Table 3B for the United States and Gold 

(US/Gold). Table 4 refers to the bivariate tail dependence structure between Bitcoin and 

Gold (BTC/Gold). Overall, we study the following pairs among international equity 

indices, Bitcoin and Gold, namely EU/US, EU/BTC, EU/Gold, US/BTC, US/Gold and 

BTC/Gold. For each table, Panel A refers to negative return exceedances in the left tail 

of the distribution, and Panel B to positive return exceedances in the right tail. 

We provide maximum likelihood estimates of the parameters of the bivariate 

extreme distribution for both fixed and optimal thresholds. We define fixed threshold with 

tail probability levels across the entire range of the distribution of returns as: 50%, 40%, 

30%, 20%, 10% and 5%. For each pair, we use the same value of probability level 𝑝 for 

return exceedances in each time-series. We also compute optimal thresholds following 

the procedure described in Appendix 2. As explained by Jansen and de Vries (1991), 

optimal thresholds optimize the trade-off between inefficiency and sample bias. We 
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report these estimates on the last line of each table panel. We report the following 

parameters: the threshold u associated with the tail probability 𝑝, the dispersion parameter 

, the tail index 𝜉 for each series, the dependence parameter 𝛼 of the logistic function 

used to model the dependence between extreme returns, and the extreme correlation 𝜌. 

We give the standard errors of the estimates in parentheses. 

A graphical representation of our estimates in Tables 1-4 is also given in Figures 

1-4, corresponding to each step of our research strategy. In these figures, we depict the 

evolution of the correlation of return exceedances moving towards the distribution tails. 

The value of the tail probability 𝑝 is used to define return exceedances. These figures also 

graphically capture the potential asymmetry between negative and positive return 

exceedances in the left and right distribution tails. The solid line represents the correlation 

between actual return exceedances obtained from the estimation of the bivariate 

distribution modelled via the logistic function. The dotted line represents the theoretical 

correlation between simulated normal return exceedances, assuming a bivariate normal 

return distribution with parameters equal to the empirically-observed means and 

covariance matrix of returns. 

4.3 Statistical tests related to normality and dependence 

We provide statistical tests based on the extreme correlation to study the issues of 

normality and dependency. First, we test if the observed extreme correlation corresponds 

to the case of normality. Any statistical deviation from normality is important in practice 

as normality remains the standard assumption for modeling returns in asset management. 

Indeed, if the assumption of bivariate normality is violated, the use of normality could 

provide misleading results to describe portfolio risk under extreme market conditions, 

and misguided diversification strategies. Second, we test if the observed extreme 

correlation corresponds to the case of independence or the case of total dependence. A 

statistical deviation from independence implies that the diversification benefits are 

limited, and even wiped out in the case of total dependence. The last columns of each 

table panel report the Wald tests of these hypotheses with the p-values in brackets. 

With respect to normality, we consider two cases: the asymptotic case and the 

finite-sample case. The former case considers the correlation of normal return 

exceedances of thresholds tending to infinity, denoted by 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, which is theoretically 
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equal to 0. The latter case considers the correlation of return exceedances over a given 

finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢). 

− 𝐻0: 𝜌 = 0. We test the null hypothesis of asymptotic normality. That is if 

the observed extreme correlation is equal to the extreme correlation in the 

asymptotic case obtained with a normal distribution of returns, 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, 

which is equal to 0. 

− 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢). We test the null hypothesis of normality in the finite-

sample case. That is if the observed extreme correlation is equal to the 

extreme correlation in the finite-sample case obtained with a normal 

distribution of returns. In the finite-sample case, we compute 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢) over 

a given finite threshold 𝑢 by simulation assuming that returns follow a 

bivariate normal distribution with parameters equal to the empirically-

observed means and covariance matrix of returns. 

With respect to the issue of dependence, we consider the two limit cases: 

independence and total dependence. The former case corresponds to an extreme 

correlation, 𝜌𝑖𝑛𝑑, which is equal to 0, and the latter to an extreme correlation, 𝜌𝑑𝑒𝑝, which 

is equal to 1. 

− 𝐻0: 𝜌 = 0. We test the null hypothesis of asymptotic independence of 

extremes. That is if the observed extreme correlation is equal to the 

extreme correlation obtained under asymptotic independence of extremes, 

 𝜌𝑖𝑛𝑑, which is equal to 0. 

− 𝐻0: 𝜌 = 1. We test the null hypothesis of total dependence of extremes. 

That is if the observed extreme correlation is equal to the extreme 

correlation obtained under total dependence of extremes,  𝜌𝑑𝑒𝑝, which is 

equal to 1. 

4.4 Main empirical results 

We now present our main empirical results about the estimation of the parameters 

of the bivariate model for the tail dependence structure. We follow our four-step research 

strategy highlighting the major findings in each step. 
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Step 1: Equity markets 

Table 1 refers to the bivariate tail dependence structure between the equity 

markets in Europe and the United States (EU/US). We confirm the stylized fact of the 

behavior of equity markets during extremely volatile periods. We find that the tail 

dependence increases in bear markets and decreases in bull markets. Longin and Solnik 

(2001) found similar results between the main European equity markets (France, 

Germany, the United Kingdom) and the US equity market. The level of extreme 

correlation during stock market crashes is even higher in our study which uses a more 

recent time-period: 0.878 vs 0.571 for the correlation for negative return exceedances (at 

optimal threshold levels). The level of extreme correlation during stock market booms is 

also higher in our study: 0.384 vs 0.140 for the correlation for positive return exceedances. 

More specifically, for negative return exceedances (Panel A), we observe that the 

correlation of return exceedances 𝜌 increases across the left tail of the distribution. It is 

equal to 0.888 for 𝑝 = 50% and 0.890 for 𝑝 = 5%. The correlation of return exceedances 

𝜌 at the optimal thresholds is equal to 0.878. With respect to asymptotic normality, we 

reject the null hypothesis: 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, as the first Wald test reveals across the entire 

range of the left distribution tail. The value of this test is equal to 26.641 for 𝑝 = 50% and 

203.487 for 𝑝 = 5%. At the optimal thresholds, it is equal to 63.419 and leads to a strong 

rejection of the null hypothesis too. With respect to normality in the finite-sample case, 

we also reject the null hypothesis 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢) moving to the left endpoint of the 

distribution for tail probability levels lower than 20%, as the second Wald test suggests. 

The value of this test is equal to 0.694 for 𝑝 = 50%, 2.152 for 𝑝 = 20%, and 3.726 for 𝑝 

= 5%. At the optimal thresholds, it is equal to 3.130 and leads to a rejection of the null 

hypothesis too. With respect to the asymptotic independence of extremes, we reject the 

null hypothesis: 𝐻0: 𝜌 = 0, as the first Wald test reveals across the entire range of the left 

distribution tail. With respect to the total dependence of extremes, we reject the null 

hypothesis: 𝐻0: 𝜌 =  𝜌𝑑𝑒𝑝 for all threshold values. The value of this test is equal to 3.256 

for 𝑝 = 50% and 25.008 for 𝑝 = 5%. At the optimal thresholds, it is equal to 8.678 and 

leads to a strong rejection of the null hypothesis too. 

As for positive return exceedances (Panel B), we observe that the correlation of 

return exceedances 𝜌 declines across the right tail of the distribution. It is equal to 0.864 

for 𝑝 = 50% and 0.521 for 𝑝 = 5%. The correlation of return exceedances 𝜌 at the optimal 

thresholds is equal to 0.668. With respect to asymptotic normality, we reject the null 
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hypothesis 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑎𝑠𝑦

, as the first Wald test reveals across the entire range of the right 

distribution tail. The value of this test is equal to 24.194 for 𝑝 = 50% and 17.260 for 𝑝 = 

5%. At the optimal thresholds, it is equal to 61.206 and also leads to a strong rejection of 

the null hypothesis. Furthermore, with respect to normality in the finite-sample case, we 

cannot reject the null hypothesis 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢) moving to the right endpoint of the 

condition distribution for all values of 𝑢 under consideration, as the second Wald test 

suggests. The value of this test is equal to 0.169 for 𝑝 = 50% and 0.548 for 𝑝 = 5%. At 

the optimal thresholds, it is equal to 0.199. With respect to the asymptotic independence 

of extremes, we reject the null hypothesis: 𝐻0: 𝜌 = 0, as the first Wald test reveals across 

the entire range of the right distribution tail. With respect to the total dependence of 

extremes, we reject the null hypothesis 𝐻0: 𝜌 =  𝜌𝑑𝑒𝑝 of total dependence in all cases. 

The value of this test is equal to 27.155 for 𝑝 = 50% and 32.592 for 𝑝 = 5%. At the optimal 

thresholds, it is equal to 90.987. 

The asymmetry between negative and positive return exceedances is confirmed 

by Figure 1, which refers to the bivariate tail dependence structure between the European 

and United States return exceedances (EU/US). As shown in Figure 1, the correlation of 

negative return exceedances is always greater than the correlation of positive return 

exceedances. The difference is statistically significant at the 5% confidence level. 

Step 2: Equity markets and Bitcoin 

Tables 2A and 2B refer to the bivariate tail dependence structure between each 

equity market and Bitcoin: Europe and Bitcoin (EU/BTC) and the US and Bitcoin 

(US/BTC). In this step, we combine each equity market with Bitcoin to assess the 

potential diversification benefits of Bitcoin during extremely volatile periods. We find 

that the tail dependence between each equity market and Bitcoin decreases in both bear 

and bull markets. Thus, Bitcoin could provide significant diversification benefits to 

investors. 

More specifically, as for Table 2A, we observe that the dependency declines 

moving towards the distribution tails. Regarding negative return exceedances (Panel A), 

the correlation of return exceedances is equal to 0.477 for 𝑝 = 50% and 0.019 for 𝑝 = 5%. 

Regarding positive return exceedances (Panel B), the correlation of return exceedances 

stands is equal to 0.609 for 𝑝 = 50% and 0.084 for 𝑝 = 5%. Furthermore, we accept the 

null hypothesis that the correlation of return exceedances follows a bivariate-normal 

distribution in most fixed thresholds in both distribution tails. As for Table 2B, a similar 
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conclusion is obtained. The dependency declines moving towards the distributions tails 

and we accept the null hypothesis that the correlation of return exceedances follows a 

bivariate-normal distribution in most fixed thresholds in both distribution tails. Regarding 

negative return exceedances (Panel A), the correlation of return exceedances is equal to 

0.547 for 𝑝 = 50% and 0.123 for 𝑝 = 5%. Regarding positive return exceedances (Panel 

B), the correlation of return exceedances is equal to 0.599 for 𝑝 = 50% and 0.200 for 𝑝 = 

5%. 

Figures 2A and 2B depict the bivariate tail dependence structure between each 

equity market and Bitcoin (EU/BTC and US/BTC). Unlike Figure 1 for equity markets 

alone, we observe that the extreme correlation for both negative and positive return 

exceedances decreases when we go further into the tails. Moreover, this statistical 

behavior appears to be symmetric.  

Step 3: Equity markets and Gold 

Tables 3A and 3B refer to the bivariate tail dependence structure between each 

equity market and Gold: Europe and Gold (EU/Gold) and the US and Gold (US/Gold). In 

this step, we combine each equity market with Gold to confirm its well-known 

diversification benefits during extremely volatile periods. We find that the tail 

dependence between each equity market and Gold decreases in bear markets. Thus, it 

confirms the status of Gold as a safe haven. 

More specifically, as for Table 3A, we observe that the dependency declines 

moving towards the distribution tails. We observe the same bivariate patterns among the 

dependency of negative returns exceedances between the pairs, the one of which is 

Bitcoin or Gold. In positive returns exceedances, the corresponding dependency is always 

greater in the pairs where Gold exists. The correlation of return exceedances is equal to 

0.522 for 𝑝 = 50% and 0.060 for 𝑝 = 5% for negative return exceedances (Panel A). 

Regarding positive return exceedances (Panel B), the correlation of return exceedances is 

equal to 0.606 for 𝑝 = 50% and 0.372 for 𝑝 = 5%. As for Tables 3B, a similar conclusion 

is obtained. The dependency declines moving towards the distributions tails. We do not 

reject the null hypothesis that the correlation of return exceedances follows a bivariate 

normal distribution for most fixed thresholds in both distribution tails. Regarding negative 

return exceedances (Panel A), the correlation of return exceedances is equal to 0.558 for 

𝑝 = 50% and 0.089 for 𝑝 = 5%. Regarding positive return exceedances (Panel B), the 

correlation of return exceedances is equal to 0.614 for 𝑝 = 50% and 0.259 for 𝑝 = 5%. 
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Figures 3A and 3B depict the bivariate tail dependence structure between each 

equity market and Gold (EU/Gold and US/Gold). Unlike Figure 1 for equity markets 

alone, we observe that the extreme correlation for both negative and positive return 

exceedances decreases when we go further into the tails. As for Bitcoin, this statistical 

behavior appears to be symmetric. 

Step 4: Bitcoin and Gold 

Table 4 refers to the bivariate tail dependence structure between Bitcoin and Gold 

(BTC/Gold). In this step, we consider a position in Bitcoin and Gold only to see if both 

assets can provide diversification benefits during extremely volatile periods at the same 

time. We find that the tail dependence between Bitcoin and Gold decreases in both bear 

and bull markets. Thus, it indicates that both Bitcoin and Gold can be used together in 

times of turbulence of financial markets.  

As for Table 4, the dependency also declines moving towards the distribution tails. 

We do not reject the null hypothesis that the correlation of return exceedances follows a 

bivariate normal distribution for most fixed thresholds in both distribution tails. More 

specifically, the correlation of negative return exceedances (Panel A) is equal to 0.520 for 

𝑝 = 50% and 0.083 for 𝑝 = 5%. The correlation of positive return exceedances (Panel B) 

is equal to 0.590 for 𝑝 = 50% and 0.106 for 𝑝 = 5%. 

Figure 4 depicts the bivariate tail dependence structure between Bitcoin and Gold 

(BTC/Gold). Unlike Figure 1 for equity markets, we observe that the extreme correlation 

for both negative and positive return exceedances decreases when we go further into the 

tails. 

5. Bitcoin vs Gold 

In this section, we evaluate the potential diversification benefits of both Bitcoin 

and Gold during extremely volatile periods in equity markets. We first discuss the general 

economic backdrop of Bitcoin and Gold. We then compare the extreme correlation 

between equity markets, and Bitcoin or Gold. Finally, we assess the joint potential of 

Bitcoin and Gold as diversifiers for equity positions. 

5.1 Economic backdrop 

Bitcoin and Gold are two fundamentally different assets in several respects. On 

the one hand, Bitcoin exhibits a very shadowy background, including accusations of 
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securities theft, fraud, and criminal activity (see Gandal et al., 2018; among others). It is 

also free of sovereign risk since it is independent from regulatory authorities, central 

banks and governments.4 On the other hand, Gold exhibits a very good reputation. It is 

universal since it is globally accepted in transactions. Bitcoin and Gold also present 

similarities. Mainly, they are both non-productive assets and speculative investments as 

they do not produce future cash flows. Gold is inscribed in the memory of investors as a 

safe haven during various economic disasters. Recently, the financial press has debated 

if Bitcoin could present the same capabilities as Gold, while the academic literature 

cannot provide convincing answers on this topic.5 

To contribute to the current comparison between Bitcoin and Gold, we study if 

Bitcoin has an advantage over Gold in terms of diversification benefits during downside 

market conditions. Since such market conditions matter the most for investors, we base 

our contribution on multivariate extreme value theory, which constitutes the proper 

statistical tool to model the dependence structure during extremely volatile periods. We 

also wonder if both Bitcoin and Gold can be useful together as safe havens. 

5.2 Diversifiers for equity markets: Bitcoin or Gold? 

Table 5 compares the results obtained in Steps 2 and 3 of our research strategy. 

Panel A reports the extreme correlation between the European equity market and Bitcoin 

𝜌𝐸𝑈/𝐵𝑇𝐶, and between the European equity market and Gold 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑. Panel B reports 

the extreme correlation between the US equity market and Bitcoin 𝜌𝑈𝑆/𝐵𝑇𝐶, and between 

the US equity market and Gold 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑. In each panel, we test the following null 

hypotheses: 𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑 and 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑, by a Wald test, to 

assess the potential advantages of Bitcoin and Gold in terms of diversification benefits 

during downside market conditions. 

As for the European equity market (Panel A), for negative return exceedances, we 

cannot reject the null hypothesis of equality 𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑 at optimal threshold 

levels as the value of the Wald test is equal to 0.482. As for positive return exceedances, 

                                                 

 

4 Since Bitcoin uses the blockchain technology which ensures that any transaction is unique, and 

users can complete transactions without any intervention from regulatory authorities, central banks and 

governments. See Yermack (2017) for additional information regarding Blockhains. 
5 This point has been highlighted by the financial press. See Mackintosh (2017), Price (2018), 

Somerset Webb (2018) and Taplin (2018) among others. 
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we also cannot reject the null hypothesis as the value of the Wald test is equal to 0.785. 

As for the US equity market (Panel B), for negative return exceedances, we cannot reject 

the null hypothesis of equality 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑 at optimal threshold levels, since 

the value of the Wald test is equal to 0.886. As for positive return exceedances, we cannot 

also reject the null hypothesis as the value of the Wald test is equal to 0.872. 

Figure 5A depicts the extreme correlation between the European equity market 

and Bitcoin, and between the European equity market and Gold. Figure 5B depicts the 

extreme correlation between the US equity market and Bitcoin, and between the US 

equity market and Gold. In these figures, the differences in the extreme correlation 

between the pairs under consideration are mostly statistically non-significant, with the 

exception of the positive return exceedances in the European equity market. 

Overall, considering a separate addition of Bitcoin or Gold in an equity position, 

our findings show that an equity position including Gold does not have any significant 

advantage over an equity position including Bitcoin during extremely volatile periods. 

Although advantages and disadvantages can be found for both speculative assets, our 

extreme value analysis contributes to the debate on which asset is superior and why; our 

approach is not based on philosophical premises of progressivists and conservationists 

yet based on a rigorous statistical analysis for portfolio risk management. Consequently, 

from the perspective of diversification benefits, we conclude that Bitcoin can be 

considered as the new digital Gold.  

5.3 Joint diversifiers for equity markets: Bitcoin and Gold? 

The findings obtained in Step 4 of our research strategy reveal clear evidence that 

both Bitcoin and Gold can be useful together in times of turbulence in financial markets. 

We remind here that we find a decreasing correlation by going further into both the left 

and right tails. We observe very low correlation levels: the correlation of negative return 

exceedances is equal to 0.054 at optimal threshold levels, and the correlation of positive 

return exceedances is equal to 0.024. Both assets, Bitcoin and Gold, could then be added 

to a position in equity markets to provide extra diversification benefits. 

From a portfolio management point of view, for the question “Bitcoin vs Gold”, 

our empirical analysis shows that both Bitcoin and Gold is the best answer to diversify a 

position in equity markets during extremely volatile periods. 
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6. Conclusion 

In this paper, we use multivariate extreme value theory, which is the proper 

statistical approach to deal with extremes, to investigate the potential diversification 

benefits of Bitcoin during extremely volatile periods. We focus on the correlation of 

return exceedances analyzing the tail dependence structure of international equity 

markets, Europe and the United States, vis-à-vis Bitcoin and Gold in a pairwise 

comparison. 

We proceed in our analysis developing a research strategy in four steps. In Step 

1, we consider a position in equity markets, and find -similarly to previous studies- that 

the correlation of extreme stock returns increases during stock market crashes and 

decreases during stock market booms. In Step 2, we combine each equity position with 

Bitcoin, and find that the correlation of extreme returns sharply decreases during both 

market booms and crashes, indicating that Bitcoin can play an important role in asset 

management during extremely volatile periods to provide diversification benefits. In Step 

3, we similarly combine each equity position with Gold, and obtain a similar result, 

confirming its well-recognized status of safe haven in asset management when a crisis 

happens. In Step 4, we combine Bitcoin and Gold, and find a low correlation of return 

exceedances, indicating that both assets can be useful together in times of turbulence in 

financial markets. Such evidence shows that Bitcoin can be considered as the new digital 

Gold, yet Gold can still play an important role in portfolio risk management. 
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Appendix 1. Procedure to obtain stationary return series 

In order to apply extreme value theory, it is important to work with stationary 

time-series. To deal with this issue we used the 3-step procedure developed by Gallant et 

al. (1992) reproduced below. 

Step 1 

First, we de-trend the mean by regressing the raw original series on a set of 

explanatory variables that take into account the time trends (linear and quadratic) and 

several seasonality effects, as follows: 

𝒓 = 𝒙 ∙ 𝜷 + 𝒖  A1.1 

with 𝒓 being log-returns. The matrix 𝒙 comprises the following regressors: a constant 

term, a dummy variable for each day of the week, except Monday to avoid 

multicollinearity and without considering Saturdays and Sundays; four dummy variables 

that refer each to one particular period in January, and that all together cover the 31 days 

in January (1-7, 8-14, 15-21, 22-31); four dummy variables that refer each to one 

particular period in December, and that all together cover the 31 days in December (1-7, 

8-14, 15-21, 22-31); one dummy variable for each month of the year, except January, 

February and December to avoid multi-colinearity; two dummy variables to take into 

account time trends, one linear and one quadratic; four dummy variables, that define, 

respectively, situations in which there is a gap of 1 day, 2 days, 3 days or 4 days between 

two consecutive trading days. In total, 𝒙 comprises 28 regressors, including the constant. 

The aforementioned regressors are meant to take into account the seasonality of a return 

series. 

Step 2 

Second, we de-trend the variance of the time-series by running the subsequent 

regression, as follows: 

𝐥𝐨𝐠 𝒖𝟐 = 𝒙′𝜸 + 𝝐 A1.2 

where it has to be noticed that the same set of explanatory variables is used in order to 

remove the trend from the variance. 

Step 3 

Third, we perform the following transformation to compute the adjusted time 

series, as follows: 
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𝒓𝒂𝒅𝒋 = 𝒂 + 𝒃 (
𝒖̂

𝒆𝒙‘𝜸

𝟐

) A1.3 

where the coefficients 𝒂 and 𝒃 in (A1.3) are determined by solving a system of two 

equations with two unknowns, where the adjusted time series is required to have the same 

mean and variance of the original series. 
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Appendix 2. Derivation of the maximum likelihood function 

To estimate the parameters of the model presented in Section 3, we use the 

maximum likelihood method developed by Ledford and Tawn (1997) and applied by 

Longin and Solnik (2001) reproduced below. This appendix presents the construction of 

the likelihood function in detail. 

The method is based on a set of assumptions. Returns are assumed to be 

independent. The thresholds 𝑢1 and 𝑢2 used to select return exceedances (or equivalently 

the tail probabilities 𝑝1 and 𝑝2) are independent of the variables and time. The method is 

also based on a censoring assumption. For thresholds 𝑢1 and 𝑢2, the space of return values 

is divided into four regions given by {𝐴𝑗𝑘; 𝑗 = 𝐼(𝑋1 > 𝑢1), 𝑘 = 𝐼(𝑋2 > 𝑢2)} where 𝐼(∙) 

is the indicator function. The method treats return observations below threshold as 

censored data. Finally, the dependence in extreme returns is modeled using a logistic 

function denoted by 𝐷𝑙. 

The likelihood contribution corresponding to the observation of returns at time 

𝑡 (𝑋1𝑡, 𝑋2𝑡) falling in region 𝐴𝑗𝑘 is denoted by 𝐿𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) and given by: 

𝐿00(𝑋1𝑡, 𝑋2𝑡) = 𝑒𝑥𝑝(−𝐷𝑙(𝑌1, 𝑌2)) 

𝐿01(𝑋1𝑡, 𝑋2𝑡)=
𝜕𝐹𝑅 

𝑢(𝑋1𝑡,𝑋2𝑡)

𝜕𝑋2𝑡
=exp(−𝐷𝑙(𝑌1, 𝑍2))

𝜕𝐷𝑙

𝜕𝑋2𝑡
(𝑌1, 𝑍2)𝐾2 

𝐿10(𝑋1𝑡, 𝑋2𝑡) =  
𝜕𝐹𝑅 

𝑢(𝑋1𝑡, 𝑋2𝑡)

𝜕𝑋1𝑡
= 𝑒𝑥𝑝(−𝐷𝑙(𝑍1, 𝑌2))

𝜕𝐷𝑙

𝜕𝑋1𝑡

(𝑍1, 𝑌2)𝐾1 

𝐿11(𝑋1𝑡, 𝑋2𝑡) =
𝜕2𝐹𝑅 

𝑢(𝑋1𝑡, 𝑋2𝑡)

𝜕𝑋1𝑡𝜕𝑋2𝑡

=  𝑒𝑥𝑝(−𝐷𝑙(𝑍1, 𝑍2))(
𝜕𝐷𝑙

𝜕𝑋1𝑡

(𝑍1, 𝑍2)
𝜕𝐷𝑙

𝜕𝑋2𝑡

(𝑍1, 𝑍2) −
𝜕2𝐷1

𝜕𝑋1𝑡𝜕𝑋2𝑡

(𝑍1, 𝑍2) 

where the variables 𝑌𝑖 𝑍𝑖 and 𝐾𝑖 for 𝑖 = 1,2 are defined by: 

𝑌𝑖 = −1/log𝐹𝑋𝑖

𝑢𝑖  (𝑢𝑖), 

𝑍𝑖 = −1/log𝐹𝑋𝑖

𝑢𝑖(𝑋𝑖𝑡), 

𝐾𝑖 = −𝑝𝑖𝜎𝑖
−1 (1 + 𝜉𝑖(𝑋𝑖𝑡 − 𝑢𝑖)/𝜎𝑖)+

−(1+𝜉𝑖)/𝜉𝑖𝑍𝑖
2 exp(1/𝑍𝑖). 

The likelihood contribution from the observation of returns at time 𝑡 (𝑋1t, 𝑋2t) for 

the bivariate distribution of return exceedances described by a set of parameters  =

 (𝑝1, 𝑝2,1,2, 
1

,  
2

,) is given by: 

𝐿(𝑋1𝑡, 𝑋2𝑡, 𝛷) = ∑ 𝐿𝑗𝑘(

𝑗,𝑘∈{0,1}

𝑋1𝑡, 𝑋2𝑡)𝐼𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) 



25 

 

where 𝐿𝑗𝑘(𝑋1𝑡, 𝑋2𝑡) 𝛪{(𝑋1𝑡, 𝑋2𝑡) ∈ 𝐴𝑗𝑘}. Hence, the likelihood for a set of 𝑇 independent 

observations of returns is given by: 

𝐿({𝑋1𝑡, 𝑋2𝑡}𝑡=1,𝑇, 𝛷) = ∏ 𝐿(𝑋1𝑡, 𝑋2𝑡, 𝛷).

𝑇

𝑡=1
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Appendix 3. Computation of optimal threshold levels 

Over a high threshold 𝑢 the peaks-over-threshold approach constitutes an efficient 

method for modelling extremes via the GPD. However, one of the most important factors 

when dealing with extremes is the selection of the threshold 𝑢. If we select a low value 

of threshold, this will induce a significant estimation bias, by characterizing observations 

as exceedances not belonging to the distribution tails. On the other hand, if we select a 

high value of threshold 𝑢, this will lead to inefficiency by reducing the estimation sample 

and increasing standard errors. An optimal threshold optimizes the trade-off between 

inefficiency and sample bias. 

In empirical literature, several approaches have been proposed to this issue. In this 

paper, we apply the procedure inspired by Gkillas et al. (2017) via the parametric 

bootstrap goodness-of-fit test of Villasenor-Alva and Gonzalez-Estrada (2009) for the 

computation of the optimal thresholds. Applying this procedure, we take into 

consideration the error for accepting that the GPD is a distribution for a random sample 

defined by a threshold u when u is not appropriate. We minimize this error via this 

powerful goodness-of-fit test. This test can provide results for the whole parameter space, 

in relation to other goodness-of-fit tests proposed in the literature (see Meintanis and 

Bassiakos, 2007; and Choulakian and Stephens, 2001). We describe this procedure in 

detail in this appendix. 

Let 𝑋 = {𝑋1, 𝑋2, … , 𝑋𝑛} be a sequence of independent and identically distributed 

random variables defined on the positive real numbers with a continuous cumulative 

distribution function 𝐹𝑋, for 𝑖 = 1, 2, . . , 𝑛. Let also 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(n) be the 

corresponding order statistics. Our approach is proceeding in the following steps. 

Step 1 

We extract 𝑛 subsequences from 𝑋, such that 𝑋𝑘
′ = {𝑋(𝑘)

′ , 𝑋(𝑘+1)
′ , … , 𝑋(𝑛)

′ }
𝑘

⊆ 𝑋 

for 𝑘 = 1, … , 𝑛, where 𝑘 corresponds to a number of upper order statistic and can be 

associated with the unknown threshold 𝑢 of the GPD. 

Step 2 

We apply an iterative n-step algorithm and we select the 𝑘 that corresponds to the 

maximal p-value (𝑝) of the intersection–union goodness-of-fit test of Villasenor-Alva 

and Gonzalez-Estrada (2009), as follows: 
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𝑢 = 𝑋(𝑘)
′ =̂ max

𝑘=1,…,𝑛
{𝑝(𝑘), 𝑝(𝑘+1) … , 𝑝(𝑛)},  𝑘 ∈ {1, … , 𝑛} A3.1 

for the null hypothesis 𝐻0: 𝐹𝑋
𝑢(𝑥)~𝐺𝜉,𝜎(𝑥) defined by two sub-classes of GPD, the 𝐴+ 

which corresponds that 𝐻0
+: 𝐹𝑋

𝑢(𝑥)~𝐺𝜉,𝜎(𝑥) with 𝜉 ≥ 0 and the 𝐴− which corresponds 

that 𝐻0
−: 𝐹𝑋

𝑢(𝑥)~𝐺𝜉,𝜎(𝑥) with 𝜉 < 0. Thus, 𝐻0: 𝐹 ∈ (𝐴+ ∪ 𝐴−), which is rejected 

whenever both hypotheses 𝐻0
+ and 𝐻0

− are rejected. 

Step 3 

The optimal threshold 𝑢 corresponds to the optimal 𝑘𝑡ℎ upper order statistic of 

the previous step. 

Step 4 

We apply this procedure in each distribution tail separately for 999 bootstrap 

samples. 

 



28 

 

Table 1. Estimation of the bivariate distribution of return exceedances for the European and US equity markets 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈  𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.036 0.015 0.057 0.031 0.026 -0.505 0.379 0.890 203.487 3.726 25.008 

  (0.005) (0.280)  (0.008) (0.278) (0.058) (0.004) [0.000] [0.000] [0.000] 

10% 0.029 0.010 0.267 0.023 0.013 0.058 0.408 0.841 68.944 4.124 13.057 

  (0.003) (0.237)  (0.004) (0.249) (0.040) (0.012) [0.000] [0.000] [0.000] 

20% 0.018 0.014 0.017 0.013 0.014 0.013 0.409 0.831 36.642 2.152 7.426 

  (0.002) (0.107)  (0.002) (0.136) (0.029) (0.023) [0.000] [0.031] [0.000] 

30% 0.008 0.019 −0.099 0.007 0.015 −0.013 0.378 0.875 28.733 1.361 4.106 

  (0.002) (0.068)  (0.002) (0.100) (0.022) (0.030) [0.000] [0.173] [0.000] 

40% 0.003 0.019 -0.087 0.003 0.014 0.009 0.365 0.877 26.008 0.839 3.638 

  (0.002) (0.064)  (0.002) (0.088) (0.018) (0.034) [0.000] [0.400] [0.000] 

50% 0.000 0.019 -0.075 0.000 0.013 0.035 0.351 0.888 24.641 0.694 3.256 

  (0.002) (0.063)  (0.001) (0.079) (0.016) (0.036) [0.000] [0.487] [0.001] 

3.01% 0.042 0.021 -0.130 0.041 0.030 0.026 0.349 0.878 63.419 3.130 8.678 

3.00%  (0.008) (0.288)  (0.009) (0.000) (0.071) (0.014) [0.000] [0.001] [0.000] 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈  𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.017 -0.151 0.000 0.014 -0.122 0.385 0.864 24.194 0.169 27.155 

  (0.001) (0.041)  (0.001) (0.056) (0.016) (0.036) [0.000] [0.865] [0.000] 

40% 0.006 0.014 -0.094 0.004 0.012 -0.055 0.435 0.810 25.739 0.619 30.949 

  (0.001) (0.058)  (0.001) (0.074) (0.020) (0.031) [0.000] [0.535] [0.000] 

30% 0.010 0.012 -0.050 0.008 0.011 -0.012 0.472 0.785 29.597 0.629 36.908 

  (0.001) (0.079)  (0.001) (0.094) (0.024) (0.027) [0.000] [0.529] [0.000] 

20% 0.015 0.012 -0.067 0.012 0.011 -0.008 0.512 0.746 39.503 0.224 52.186 

  (0.002) (0.086)  (0.002) (0.121) (0.031) (0.019) [0.000] [0.822] [0.000] 

10% 0.024 0.009 0.021 0.019 0.012 -0.072 0.566 0.686 153.940 0.486 223.625 

  (0.002) (0.132)  (0.003) (0.165) (0.043) (0.004) [0.000] [0.626] [0.000] 

5% 0.031 0.008 0.094 0.027 0.012 -0.105 0.696 0.521 17.260 0.548 32.592 

  (0.002) (0.203)  (0.004) (0.250) (0.068) (0.030) [0.000] [0.558] [0.000] 

2.00% 0.040 0.003 0.668 0.027 0.012 -0.105 0.795 0.384 6.003 1.379 15.239 

5.01%  (0.002) (0.538)  (0.004) (0.250) (0.087) (0.064) [0.000] [0.168] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European and 

US equity markets represented by the STOXX Europe 600 index and the S&P 500 index. Panel A reports the estimates for negative return exceedances. Panel 

B reports the estimates for positive return exceedances. Return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used 

for 𝑢. Fixed levels correspond to tail propabillity p: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆). 

Optimal levels are computed by the procedure described in Appendix 1. They are given on the last line of each panel. Eight parameters are estimated: the 

threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the depedence parameter 𝛼 of the logistic function 

used to model the tail dependence, and the correlation of return exceedances 𝜌 (derived from the depedence parameter 𝛼). Standard errors are given below in 

parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. Two cases are considered: the asymptotic case and the finite-sample 

case. In the asymptotic case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample 

case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation assuming that returns follow a 

bivariate normal distribution with parameters equal to the empirically-observed means and covariance matrix of returns. The issue of dependency is studied 

by considering two special cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in 

brackets.  
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Table 2Α. Estimation of the bivariate distribution of return exceedances for the European equity market and 

Bitcoin 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.035 0.013 -0.084 0.193 0.073 -0.182 0.999 0.019 0.373 0.273 19.616 

  (0.008) (0.549)  (0.045) (0.555) (0.000) (0.050) [0.709] [0.784] [0.000] 

10% 0.029 0.011 0.026 0.149 0.077 -0.176 0.923 0.170 20.099 1.988 97.826 

  (0.003) (0.246)  (0.022) (0.219) (0.040) (0.008) [0.000] [0.047] [0.000] 

20% 0.016 0.019 -0.233 0.075 0.112 -0.288 0.868 0.234 23.400 0.426 76.600 

  (0.003) (0.121)  (0.020) (0.124) (0.034) (0.010) [0.000] [0.795] [0.000] 

30% 0.007 0.022 -0.255 0.027 0.131 -0.312 0.801 0.364 33.791 0.343 59.062 

  (0.003) (0.096)  (0.018) (0.092) (0.030) (0.011) [0.000] [0.732] [0.000] 

40% 0.002 0.021 -0.216 0.011 0.104 -0.166 0.735 0.472 25.625 0.417 28.636 

  (0.003) (0.087)  (0.015) (0.100) (0.026) (0.018) [0.000] [0.677] [0.000] 

50% 0.000 0.021 -0.193 0.000 0.092 -0.086 0.715 0.477 21.525 2.316 23.640 

  (0.003) (0.086)  (0.013) (0.106) (0.023) (0.022) [0.000] [0.021] [0.000] 

11.11% 0.028 0.009 0.136 0.160 0.063 -0.061 0.924 0.164 20.456 0.943 104.412 

9.20%  (0.003) (0.252)  (0.021) (0.253) (0.039) (0.008) [0.000] [0.346] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.018 -0.295 0.000 0.094 -0.042 0.649 0.609 21.568 1.083 34.800 

  (0.002) (0.079)  (0.012) (0.088) (0.019) (0.028) [0.000] [0.279] [0.000] 

40% 0.006 0.015 -0.242 0.024 0.099 -0.078 0.749 0.456 25.615 0.029 55.721 

  (0.002) (0.109)  (0.013) (0.095) (0.026) (0.018) [0.000] [0.977] [0.000] 

30% 0.010 0.013 -0.200 0.050 0.099 -0.088 0.810 0.353 31.713 0.001 89.500 

  (0.002) (0.149)  (0.016) (0.111) (0.030) (0.011) [0.000] [1.000] [0.000] 

20% 0.014 0.016 -0.397 0.089 0.095 -0.084 0.868 0.265 105.568 0.555 398.491 

  (0.002) (0.126)  (0.019) (0.142) (0.034) (0.003) [0.000] [0.579] [0.000] 

10% 0.025 0.012 -0.437 0.155 0.075 0.051 0.898 0.209 15.893 2.771 75.683 

  (0.000) (0.077)  (0.025) (0.274) (0.044) (0.013) [0.000] [0.006] [0.000] 

5% 0.031 0.013 -0.716 0.202 0.139 -0.470 0.949 0.084 3.896 0.686 46.574 

  (0.000) (0.060)  (0.081) (0.530) (0.047) (0.021) [0.000] [0.492] [0.000] 

11.11% 0.023 0.161 0.080 0.114 0.111 0.013 -0.465 0.175 65.110 0.113 371.015 

11.14%  (0.023) (0.019)  (0.019) (0.000) (0.065) (0.003) [0.000] [0.910] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European 

equity market, represented by the STOXX Europe 600 index, and Bitcoin. Panel A reports the estimates for negative return exceedances. Panel B reports the 

estimates for positive return exceedances. Return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. Fixed 

levels correspond to tail propabillity p: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶). Optimal levels 

are computed by the procedure described in Appendix 1. They are given on the last line of each panel. Eight parameters are estimated: the threshold u associated 

with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the depedence parameter 𝛼 of the logistic function used to model the tail 

dependence, and the correlation of return exceedances 𝜌 (derived from the depedence parameter 𝛼). Standard errors are given below in parentheses. The null 

hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic 

case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of 

return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation assuming that returns follow a bivariate normal distribution 

with parameters equal to the empirically-observed means and covariance matrix of returns. The issue of dependency is studied by considering two special 

cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in brackets. 
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Table 2B. Estimation of the bivariate distribution of return exceedances for the US equity market and Bitcoin 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶  𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.031 0.026 -0.505 0.193 0.073 -0.182 0.936 0.123 10.250 2.987 73.083 

  (0.008) (0.278)  (0.044) (0.554) (0.038) (0.012) [0.000] [0.002] [0.000] 

10% 0.019 0.019 -0.237 0.149 0.077 -0.176 0.919 0.186 17.183 0.368 75.152 

  (0.006) (0.259)  (0.022) (0.219) (0.041) (0.011) [0.000] [0.713] [0.000] 

20% 0.012 0.010 0.172 0.075 0.112 -0.288 0.827 0.333 444.804 2.343 890.161 

  (0.002) (0.207)  (0.020) (0.124) (0.036) (0.001) [0.000] [0.019] [0.000] 

30% 0.006 0.013 0.011 0.027 0.131 -0.312 0.771 0.414 37.986 1.443 53.672 

  (0.002) (0.125)  (0.018) (0.092) (0.031) (0.011) [0.000] [0.149] [0.000] 

40% 0.002 0.013 0.030 0.011 0.104 -0.166 0.720 0.499 27.258 0.376 27.311 

  (0.002) (0.110)  (0.015) (0.100) (0.026) (0.018) [0.000] [0.707] [0.000] 

50% 0.000 0.012 0.036 0.000 0.092 -0.086 0.686 0.547 23.502 0.761 19.614 

  (0.002) (0.099)  (0.01)3 (0.106) (0.023) (0.023) [0.000] [0.446] [0.000] 

7.28% 0.024 0.018 -0.248 0.160 0.063 -0.061 0.904 0.192 9.803 1.215 41.341 

9.20%  (0.008) (0.397)  (0.021) (0.253) (0.048) (0.020) [0.020] [0.225] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐵𝑇𝐶  𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶  𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.015 -0.322 0.000 0.094 -0.042 0.657 0.599 22.639 0.442 37.187 

  (0.002) (0.075)  (0.012) (0.088) (0.021) (0.026) [0.000] [0.658] [0.000] 

40% 0.005 0.012 -0.252 0.024 0.099 -0.078 0.710 0.514 27.222 0.751 52.489 

  (0.002) (0.102)  (0.013) (0.095) (0.026) (0.019) [0.000] [0.453] [0.000] 

30% 0.008 0.012 -0.285 0.050 0.099 -0.088 0.835 0.312 30.213 2.012 96.607 

  (0.002) (0.120)  (0.016) (0.111) (0.029) (0.010) [0.000] [0.044] [0.000] 

20% 0.012 0.012 -0.326 0.089 0.095 -0.084 0.851 0.293 249.830 0.389 853.126 

  (0.002) (0.156)  (0.019) (0.142) (0.035) (0.001) [0.000] [0.697] [0.000] 

10% 0.018 0.012 -0.514 0.155 0.075 0.051 0.869 0.260 14.893 2.940 56.938 

  (0.000) (0.063)  (0.025) (0.274) (0.048) (0.017) [0.000] [0.003] [0.000] 

5% 0.025 0.011 -0.665 0.202 0.139 -0.470 0.901 0.200 5.321 0.731 26.387 

  (0.000) (0.074)  (0.081) (0.530) (0.060) (0.038) [0.000] [0.465] [0.000] 

6.00% 0.024 0.008 -0.356 0.182 0.125 -0.331 0.916 0.167 6.139 0.074 36.674 

6.10%  (0.000) (0.127)  (0.057) (0.394) (0.052) (0.027) [0.000] [0.941] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the US equity 

markets represented by the S&P 500 index and Bitcoin. Panel A reports the estimates for negative return exceedances. Panel B reports the estimates for positive 

return exceedances. Return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. Fixed levels correspond to tail 

propabillity p: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶). Optimal levels are computed by the 

procedure described in Appendix 1. They are given on the last line of each panel. Eight parameters are estimated: the threshold u associated with the tail 

probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the depedence parameter 𝛼 of the logistic function used to model the tail dependence, 

and the correlation of return exceedances 𝜌 (derived from the depedence parameter 𝛼). Standard errors are given below in parentheses. The null hypothesis of 

normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the 

correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of return 

exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation assuming that returns follow a bivariate normal distribution with 

parameters equal to the empirically-observed means and covariance matrix of returns. The issue of dependency is studied by considering two special cases: 

asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in brackets.  
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Table 3A. Estimation of the bivariate distribution of return exceedances for the European equity market and 

Gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.036 0.015 0.057 0.033 0.023 -0.260 0.965 0.060 62.609 61.615 977.029 

  (0.005) (0.280)  (0.007) (0.244) (0.033) (0.001) [0.000] [0.000] [0.000] 

10% 0.029 0.010 0.267 0.025 0.015 -0.017 0.915 0.167 176.997 1.592 882.646 

  (0.003) (0.237)  (0.004) (0.184) (0.033) (0.001) [0.000] [0.111] [0.000] 

20% 0.018 0.014 0.017 0.019 0.010 0.178 0.901 0.201 15.461 0.734 61.461 

  (0.002) (0.107)  (0.002) (0.150) (0.025) (0.013) [0.000] [0.462] [0.000] 

30% 0.008 0.019 -0.099 0.011 0.016 -0.058 0.817 0.353 19.397 0.139 35.490 

  (0.002) (0.068)  (0.002) (0.081) (0.024) (0.018) [0.000] [0.890] [0.000] 

40% 0.003 0.019 -0.087 0.004 0.019 -0.124 0.750 0.460 19.210 0.574 22.557 

  (0.002) (0.064)  (0.002) (0.062) (0.021) (0.024) [0.000] [0.566] [0.000] 

50% 0.000 0.019 -0.075 0.000 0.021 -0.152 0.707 0.522 18.782 0.779 17.599 

  (0.002) (0.063)  (0.002) (0.054) (0.018) (0.028) [0.000] [0.436] [0.000] 

3.01% 0.042 0.030 0.021 0.025 0.111 0.014 0.936 0.123 0.135 0.033 11.580 

10.04%  (0.009) (0.008)  (0.016) (0.003) (0.041) (0.077) [0.012] [0.016] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐸𝑈 𝜎𝐸𝑈 𝜉𝐸𝑈 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.017 -0.151 0.000 0.021 -0.285 0.638 0.606 19.628 1.461 31.804 

  (0.001) (0.041)  (0.001) (0.034) (0.017) (0.031) (0.000) (0.144) (0.000) 

40% 0.006 0.014 -0.094 0.006 0.016 -0.173 0.726 0.473 20.201 0.245 42.256 

  (0.001) (0.058)  (0.002) (0.062) (0.022) (0.023) (0.000) (0.807) (0.000) 

30% 0.010 0.012 -0.050 0.012 0.012 -0.055 0.773 0.411 23.845 1.541 57.633 

  (0.001) (0.079)  (0.002) (0.094) (0.026) (0.017) (0.000) (0.123) (0.000) 

20% 0.015 0.012 -0.067 0.024 0.012 -0.064 0.817 0.341 42.200 4.619 123.536 

  (0.002) (0.086)  (0.003) (0.161) (0.031) (0.008) (0.000) (0.000) (0.000) 

10% 0.024 0.009 0.021 0.025 0.013 -0.118 0.801 0.366 44.033 7.837 120.099 

  (0.002) (0.132)  (0.003) (0.159) (0.044) (0.008) (0.000) (0.000) (0.000) 

5% 0.031 0.008 0.094 0.033 0.009 0.111 0.796 0.372 12.308 12.280 32.711 

  (0.002) (0.203)  (0.003) (0.344) (0.061) (0.030) (0.000) (0.000) (0.000) 

2.02% 0.040 0.003 0.668 0.028 0.011 -0.023 0.855 0.270 0.286 0.001 6.507 

8.08%  (0.002) (0.538)  (0.003) (0.204) (0.068) (0.118) [0.044] [0.000] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the European 

equity market, represented by the STOXX Europe 600 index, and Gold. Panel A reports the estimates for negative return exceedances. Panel B reports the 

estimates for positive return exceedances. Return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. Fixed 

levels correspond to tail propabillity p: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐺𝑜𝑙𝑑). Optimal levels 

are computed by the procedure described in Appendix 1. They are given on the last line of each panel. Eight parameters are estimated: the threshold u associated 

with the tail probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the depedence parameter 𝛼 of the logistic function used to model the tail 

dependence, and the correlation of return exceedances 𝜌 (derived from the depedence parameter 𝛼). Standard errors are given below in parentheses. The null 

hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟  is also tested by a Wald test. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic 

case, the correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of 

return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation assuming that returns follow a bivariate normal distribution 

with parameters equal to the empirically-observed means and covariance matrix of returns. The issue of dependency is studied by considering two special 

cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in brackets.  
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Table 3B. Estimation of the bivariate distribution of return exceedances for the US equity market and Gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.031 0.026 -0.505 0.033 0.023 -0.260 0.966 0.089 9.888 2.842 101.222] 

  (0.008) (0.278)  (0.007) (0.244) (0.032) (0.009) [0.000] [0.004] [0.000] 

10% 0.023 0.013 0.058 0.025 0.015 -0.017 0.901 0.193 193.000 16.696 806.998 

  (0.004) (0.249)  (0.004) (0.184) (0.035) (0.001) [0.000] [0.000] [0.000] 

20% 0.013 0.014 0.013 0.019 0.010 0.178 0.877 0.237 19.890 0.000 64.008 

  (0.002) (0.136)  (0.002) (0.150) (0.027) (0.012) [0.000] [1.000] [0.000] 

30% 0.007 0.015 -0.013 0.011 0.016 -0.058 0.779 0.415 22.105 2.085 31.210 

  (0.002) (0.100)  (0.002) (0.081) (0.024) (0.019) [0.000] [0.037] [0.000] 

40% 0.002 0.013 0.045 0.000 0.021 -0.162 0.708 0.515 19.214 0.214 18.119 

  (0.002) (0.087)  (0.002) (0.053) (0.019) (0.027) [0.000] [0.830] [0.000] 

50% 0.000 0.013 0.035 0.000 0.021 -0.152 0.671 0.558 19.045 0.803 15.056 

  (0.001) (0.079)  (0.002) (0.054) (0.018) (0.029) [0.000] [0.422] [0.000] 

6.06%

% 

0.028 0.024 -0.394 0.025 0.015 -0.017 0.934 0.189 188.750 16.401 810.9120 

10.01%  (0.008) (0.261)  (0.004) (0.184) (0.035) (0.001) [0.000] [0.000] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝑈𝑆 𝜎𝑈𝑆 𝜉𝑈𝑆 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.014 -0.122 0.000 0.021 -0.285 0.631 0.614 20.258 2.070 32.393 

  (0.001) (0.056)  (0.001) (0.034) (0.018) (0.030) [0.000] [0.038] [0.000] 

40% 0.004 0.012 -0.055 0.006 0.016 -0.173 0.695 0.516 21.108 1.730 40.370 

  (0.001) (0.074)  (0.002) (0.062) (0.022) (0.024) [0.000] [0.084] [0.000] 

30% 0.008 0.011 -0.012 0.012 0.012 -0.055 0.745 0.453 24.473 3.195 53.530 

  (0.001) (0.094)  (0.002) (0.094) (0.025) (0.019) [0.000] [0.001] [0.000] 

20% 0.012 0.011 -0.008 0.016 0.014 -0.144 0.819 0.338 36.281 3.579 107.008 

  (0.002) (0.121)  (0.002) (0.099) (0.030) (0.009) [0.000] [0.000] [0.000] 

10% 0.019 0.012 -0.072 0.025 0.013 -0.118 0.856 0.274 42.145 8.827 153.822 

  (0.003) (0.165)  (0.003) (0.159) (0.041) (0.006) [0.000] [0.000] [0.000 

5% 0.027 0.012 -0.105 0.033 0.009 0.111 0.864 0.259 9.477 5.027 36.304 

  (0.004) (0.250)  (0.003) (0.344) (0.055) (0.027) [0.000] [0.000] [0.000] 

2.70% 0.027 0.012 -0.105 0.029 0.012 -0.083 0.855 0.269 0.286 0.030 12.789 

7.07%  (0.004) (0.250)  (0.003) (0.213) (0.052) (0.090) [0.022] [0.015] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for the US equity 

markets represented by the S&P 500 index and Gold. Panel A reports the estimates for negative return exceedances. Panel B reports the estimates for positive 

return exceedances. Return exceedances are defined with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. Fixed levels correspond to tail 

propabillity p: 5%, 10%, 20%, 30%, 40% and 50% (the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐺𝑜𝑙𝑑). Optimal levels are computed by the 

procedure described in Appendix 1. They are given on the last line of each panel. Eight parameters are estimated: the threshold u associated with the tail 

probability 𝑝, the dispersion parameter , the tail index 𝜉 for each series, the depedence parameter 𝛼 of the logistic function used to model the tail dependence, 

and the correlation of return exceedances 𝜌 (derived from the depedence parameter 𝛼). Standard errors are given below in parentheses. The null hypothesis of 

normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the 

correlation of normal return exceedances over a threshold tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of return 

exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), is computed by simulation assuming that returns follow a bivariate normal distribution with 

parameters equal to the empirically-observed means and covariance matrix of returns. The issue of dependency is studied by considering two special cases: 

asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. The p-values of the Wald tests are given below in brackets. 
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Table 4. Estimation of the bivariate distribution of return exceedances for Bitcoin and Gold 

Panel A: Negative return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐵𝑇𝐶 𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

5% 0.193 0.073 -0.182 0.032 0.024 -0.563 0.949 0.083 3.934 0.698 43.317 

  (0.045) (0.555)  (0.013) (0.561) (0.047) (0.021) [0.000] [0.485] [0.000] 

10% 0.149 0.077 -0.176 0.023 0.016 -0.155 0.973 0.049 5.061 2.663 99.065 

  (0.022) (0.219)  (0.005) (0.250) (0.026) (0.010) [0.000] [0.008] [0.000] 

20% 0.075 0.112 -0.288 0.017 0.011 0.076 0.860 0.254 82.112 0.492 241.551 

  (0.020) (0.124)  (0.002) (0.168) (0.034) (0.003) [0.000] [0.623] [0.000] 

30% 0.027 0.131 -0.312 0.010 0.015 -0.094 0.790 0.394 34.593 1.075 53.109 

  (0.018) (0.092)  (0.002) (0.105) (0.030) (0.011) [0.000] [0.282] [0.000] 

40% 0.011 0.104 -0.166 0.004 0.018 -0.170 0.740 0.462 25.310 0.372 29.532 

  (0.015) (0.100)  (0.002) (0.080) (0.026) (0.018) [0.000] [0.710] [0.000] 

50% 0.000 0.092 -0.086 0.000 0.020 -0.208 0.698 0.520 22.429 1.240 20.688 

  (0.013) (0.106)  (0.002) (0.069) (0.023) (0.023) [0.000] [0.215] [0.000] 

11.03% 0.137 0.087 -0.231 0.022 0.014 -0.065 0.952 0.054 22.662 2.962 399.423 

11.00%  (0.023) (0.195)  (0.004) (0.246) (0.031) (0.002) [0.000] [0.003] [0.000] 

 

Panel B: Positive return exceedances 

Parameters of the model Wald tests 

𝑝 𝑢𝐵𝑇𝐶 𝜎𝐵𝑇𝐶 𝜉𝐵𝑇𝐶 𝑢𝐺𝑜𝑙𝑑 𝜎𝐺𝑜𝑙𝑑 𝜉𝐺𝑜𝑙𝑑 𝛼 𝜌 𝐻0: 𝜌 =  0 𝐻0: 𝜌 =  𝜌𝑛𝑜𝑟
𝑓.𝑠 (𝑢) 𝐻0: 𝜌 = 1 

50% 0.000 0.094 -0.042 0.000 0.018 -0.215 0.648 0.590 21.983 0.553 36.643 

  (0.012) (0.088)  (0.002) (0.051) (0.020) (0.027) [0.000] [0.580] [0.000 

40% 0.024 0.099 -0.078 0.006 0.016 -0.192 0.722 0.492 27.353 1.224 55.076 

  (0.013) (0.095)  (0.002) (0.062) (0.026) (0.018) [0.000] [0.221] [0.000] 

30% 0.050 0.099 -0.088 0.012 0.012 -0.104 0.781 0.385 35.816 0.792 92.725 

  (0.016) (0.111)  (0.002) (0.089) (0.031) (0.011) [0.000] [0.428] [0.000] 

20% 0.089 0.095 -0.084 0.016 0.011 -0.089 0.829 0.331 296.471 2.485 896.122 

  (0.019) (0.142)  (0.002) (0.112) (0.036) (0.001) [0.000] [0.013] [0.000] 

10% 0.155 0.075 0.051 0.024 0.009 0.030 0.919 0.164 15.118 0.393 91.890 

  (0.025) (0.274)  (0.002) (0.205) (0.041) (0.011) [0.000] [0.694] [0.000] 

5% 0.202 0.139 -0.470 0.032 0.006 0.249 0.948 0.106 4.740 1.167 44.464 

  (0.081) (0.530)  (0.002) (0.363) (0.048) (0.022) [0.000] [0.243] [0.000] 

10.34% 0.155 0.067 0.125 0.038 0.004 0.586 0.999 0.024 0.478 1.093 19.936 

2.29%  (0.023) (0.285)  (0.002) (0.649) (0.000) (0.050) [0.633] [0.274] [0.000] 

Note: this table gives the asymptotic maximum likelihood estimates of the parameters of the bivariate distribution of return exceedances for Bitcoin and Gold. 

Panel A reports the estimates for negative return exceedances. Panel B reports the estimates for positive return exceedances. Return exceedances are defined 

with a threshold 𝑢. Both fixed and optimal threshold levels are used for 𝑢. Fixed levels correspond to tail propabillity p: 5%, 10%, 20%, 30%, 40% and 50% 

(the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑). Optimal levels are computed by the procedure described in Appendix 1. They are given 

on the last line of each panel. Eight parameters are estimated: the threshold u associated with the tail probability 𝑝, the dispersion parameter , the tail index 

𝜉 for each series, the depedence parameter 𝛼 of the logistic function used to model the tail dependence, and the correlation of return exceedances 𝜌 (derived 

from the depedence parameter 𝛼). Standard errors are given below in parentheses. The null hypothesis of normality 𝐻0: 𝜌 = 𝜌𝑛𝑜𝑟 is also tested by a Wald test. 

Two cases are considered: the asymptotic case and the finite-sample case. In the asymptotic case, the correlation of normal return exceedances over a threshold 

tending to infinity is theoretically equal to 0. In the finite-sample case, the correlation of return exceedances over a given finite threshold 𝑢, denoted by 𝜌𝑛𝑜𝑟
𝑓.𝑠. (𝑢), 

is computed by simulation assuming that returns follow a bivariate normal distribution with parameters equal to the empirically-observed means and covariance 

matrix of returns. The issue of dependency is studied by considering two special cases: asymptotic independence 𝐻0: 𝜌 = 0 and total dependence 𝐻0: 𝜌 = 1. 

The p-values of the Wald tests are given below in brackets. 

  



34 

 

Table 5. Comparative results for equity markets, Bitcoin and Gold 

Panel A: Correlation among return exceedances for the European equity market, Bitcoin and Gold 

Negative return exceedances Positive return exceedances 

Parameters Wald test Parameters Wald test 

𝑝 𝜌𝐸𝑈/𝐵𝑇𝐶  𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝑝 𝜌𝐸𝑈/𝐵𝑇𝐶  𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  

5% 0.019 0.060 0.804 5% 0.084 0.372 5.647 

 (0.050) (0.001) [0.421]  (0.021) (0.030) [0.000] 

10% 0.170 0.167 0.333 10% 0.209 0.366 7.476 

 (0.008) (0.001) [0.739]  (0.013) (0.008) [0.000] 

20% 0.234 0.201 1.434 20% 0.265 0.341 6.909 

 (0.010) (0.013) [0.1513]  (0.003) (0.008) [0.000] 

30% 0.364 0.353 0.379 30% 0.353 0.411 2.071 

 (0.011) (0.018) [0.704]  (0.011) (0.017) [0.038] 

40% 0.472 0.460 0.286 40% 0.456 0.473 0.415 

 (0.018) (0.024) [0.775]  (0.018) (0.023) [0.678] 

50% 0.477 0.522 0.900 50% 0.609 0.606 0.051 

 (0.022) (0.028) [0.368]  (0.028) (0.031) [0.959] 

Optimal 

thresholds 

0.164 0.123 0.482 Optimal 

thresholds 

0.175 0.270 0.785 

(0.008) (0.077) [0.630] (0.003) (0.118) [0.432] 

 

Panel B: Correlation among return exceedances for the US equity market, Bitcoin and Gold 

Negative return exceedances Positive return exceedances 

Parameters Wald test Parameters Wald test 

𝑝 𝜌𝑈𝑆/𝐵𝑇𝐶  𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝑝 𝜌𝑈𝑆/𝐵𝑇𝐶  𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑  

5% 0.123 0.089 1.619 5% 0.200 0.259 0.908 

 (0.012) (0.009) [0.105]  (0.038) (0.027) [0.364] 

10% 0.186 0.193 0.738 10% 0.260 0.274 0.609 

 (0.011) (0.001) [0.333]  (0.017) (0.006) [0.543] 

20% 0.333 0.237 7.385 20% 0.293 0.338 4.500 

 (0.001) (0.012) [0.000]  (0.001) (0.009) [0.000] 

30% 0.414 0.415 0.033 30% 0.312 0.453 4.862 

 (0.011) (0.019) [0.973]  (0.010) (0.019) [0.000] 

40% 0.499 0.469 0.714 40% 0.514 0.516 0.047 

 (0.018) (0.024) [0.475]  (0.019) (0.024) [0.963] 

50% 0.547 0.558 0.212 50% 0.599 0.614 0.268 

 (0.023) (0.029) [0.832]  (0.026) (0.030) [0.789] 

Optimal 

thresholds 

0.192 0.189 0.886 Optimal 

thresholds 

0.167 0.269 0.872 

(0.020) (0.001) [0.142] (0.027) (0.090) [0.383] 

Note: this table compares the results for equity markets including Bitcoin or Gold. Panel A reports the correlation between return exceedances 

for the European equity market and Bitcoin, and the European equity market and Gold. Panel B reports the correlation between return 

exceedances for the US equity market and Bitcoin, and the US equity market and Gold. For a given estimation, the same value of tail probability 

𝑝 is taken for the four variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . Standard errors are given below in parentheses. The null hypotheses of equal 

correlation of return exceedances 𝐻0: 𝜌𝐸𝑈/𝐵𝑇𝐶 = 𝜌𝐸𝑈/𝐺𝑜𝑙𝑑  and 𝐻0: 𝜌𝑈𝑆/𝐵𝑇𝐶 = 𝜌𝑈𝑆/𝐺𝑜𝑙𝑑are also tested by a Wald test. The p-values of the test 

are given below in brackets. 
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Figure 1. Correlation between return exceedances for the European and US equity markets 

 

Note: this figure represents the correlation of return exceedances between the European and US equity markets 

represented by the STOXX Europe 600 index and the S&P 500 index. The solid line represents the correlation between 

actual return exceedances obtained from the estimation of the bivariate distribution modeled with the logistic function 

(see the estimation results in Table 1). The dotted line represents the theoretical correlation between simulated normal 

return exceedances assuming a bivariate normal distribution with parameters equal to the empirically-observed means 

and covariance matrix of returns. The value of the tail probability 𝑝 used to define the threshold for return exceedances 

ranges from 5% to 50% for both negative return exceedances (left tail) and positive return exceedances (right tail). For a 

given estimation, the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝑈𝑆.  
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Figure 2A. Correlation between return exceedances for the European equity market and 

Bitcoin 

 

Note: this figure represents the correlation of return exceedances between the European equity markets represented by 

the STOXX Europe 600 index and Bitcoin. The solid line represents the correlation between actual return exceedances 

obtained from the estimation of the bivariate distribution modeled with the logistic function (see the estimation results in 

Table 2A). The dotted line represents the theoretical correlation between simulated normal return exceedances assuming 

a bivariate normal distribution with parameters equal to the empirically-observed means and covariance matrix of returns. 

The value of the tail probability 𝑝 used to define the threshold for return exceedances ranges from 5% to 50% for both 

negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value 

of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶 .  
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Figure 2B. Correlation between return exceedances for the US equity market and Bitcoin 

 

Note: this figure represents the correlation of return exceedances between the US equity markets represented by the S&P 

500 index and Bitcoin. The solid line represents the correlation between actual return exceedances obtained from the 

estimation of the bivariate distribution modeled with the logistic function (see the estimation results in Table 2B). The 

dotted line represents the theoretical correlation between simulated normal return exceedances assuming a bivariate 

normal distribution with parameters equal to the empirically-observed means and covariance matrix of returns. The value 

of the tail probability 𝑝 used to define the threshold for return exceedances ranges from 5% to 50% for both negative 

return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value of 𝑝 is 

taken for both variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 .  
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Figure 3A. Correlation between return exceedances for the European equity market and Gold 

 

Note: this figure represents the correlation of return exceedances between the European equity markets represented by 

the STOXX Europe 600 index and Gold. The solid line represents the correlation between actual return exceedances 

obtained from the estimation of the bivariate distribution modeled with the logistic function (see the estimation results in 

Table 3A). The dotted line represents the theoretical correlation between simulated normal return exceedances assuming 

a bivariate normal distribution with parameters equal to the empirically-observed means and covariance matrix of returns. 

The value of the tail probability 𝑝 used to define the threshold for return exceedances ranges from 5% to 50% for both 

negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value 

of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐺𝑜𝑙𝑑.  
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Figure 3B. Correlation between return exceedances for the US equity market and Gold 

 

Note: this figure represents the correlation of return exceedances between the US equity markets represented by the S&P 

500 index and Gold. The solid line represents the correlation between actual return exceedances obtained from the 

estimation of the bivariate distribution modeled with the logistic function (see the estimation results in Table 3B). The 

dotted line represents the theoretical correlation between simulated normal return exceedances assuming a bivariate 

normal distribution with parameters equal to the empirically-observed means and covariance matrix of returns. The value 

of the tail probability 𝑝 used to define the threshold for return exceedances ranges from 5% to 50% for both negative 

return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the same value of 𝑝 is 

taken for both variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐺𝑜𝑙𝑑 .  
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Figure 4. Correlation between return exceedances for Bitcoin and Gold 

 

Note: this figure represents the correlation of return exceedances between Bitcoin and Gold. The solid line represents the 

correlation between actual return exceedances obtained from the estimation of the bivariate distribution modeled with the 

logistic function (see the estimation results in Table 4). The dotted line represents the theoretical correlation between 

simulated normal return exceedances assuming a bivariate normal distribution with parameters equal to the empirically-

observed means and covariance matrix of returns. The value of the tail probability 𝑝 used to define the threshold for return 

exceedances ranges from 5% to 50% for both negative return exceedances (left tail) and positive return exceedances (right 

tail). For a given estimation, the same value of 𝑝 is taken for both variables: 𝑝 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . 
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Figure 5A. Correlation between return exceedances for the European equity market, Bitcoin 

or Gold 

 

Note: this figure represents the correlation of return exceedances for the European equity market including Bitcoin or 

Gold (see the estimation results in Table 5 – Panel A). The squared points line represents the correlation between return 

exceedances for the European equity market and Bitcoin. The circle points line represents the correlation between return 

exceedances for the European equity market and Gold. The value of the tail probability 𝑝 used to define return 

exceedances ranges from 5% to 50% for both negative return exceedances (left tail) and positive return exceedances (right 

tail). For a given estimation, the same value of 𝑝 is taken for three variables: 𝑝 = 𝑝𝐸𝑈 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . 
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Figure 5B. Correlation between return exceedances for the US equity market, Bitcoin or Gold 

 

Note: this figure represents the correlation of return exceedances for the US equity market including Bitcoin or Gold (see 

the estimation results in Table 5 – Panel B). The squared points line represents the correlation between return exceedances 

for the US equity market and Bitcoin. The circle points line represents the correlation between return exceedances for the 

US equity market and Gold. The value of the tail probability 𝑝 used to define return exceedances ranges from 5% to 50% 

for both negative return exceedances (left tail) and positive return exceedances (right tail). For a given estimation, the 

same value of 𝑝 is taken for three variables: 𝑝 = 𝑝𝑈𝑆 = 𝑝𝐵𝑇𝐶 = 𝑝𝐺𝑜𝑙𝑑 . 

 


